Answer: • using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use
Explanation:
The options that will ensure laboratory safety during the experiment will be:
• using beaker tongs to handle the hot beaker.
• checking the beaker for chips prior to heating on the hot plate.
• Turning off the hot plate after use.
We should note that the beaker tongs are simply used in the holding of the beakers that have hot liquids in them. Also, it s vital for the hot plate to be turned off after its use so as to prevent accident.
Hey there!
There's many ways to do it - like melting and evaporating.
For example, we'll use water. Plain old water in a water bottle. Right now, it's in its liquid state of matter, but say you put it in the freezer for an hour. That would change its state of matter to solid, since it would be solid ice. Now, if you were to put it out in the sun on a blazing hot day for a couple of hours, it would evaporate and become water vapor, a gas. Lastly, if you can cool that water vapor it becomes a liquid again.
Hope this helps!
The frequency of the wave is 6800 Hz
<u>Explanation:</u>
Given:
Wave number, n = 20
Speed of light, v = 340 m/s
Frequency, f = ?
we know:
wave number = 

Therefore, the frequency of the wave is 6800 Hz
Answer:
3141N or 3.1 ×10³N to 2 significant figures. The can experiences this inward force on its outer surface.
Explanation:
The atmospheric pressure acts on the outer surface of the can. In order to calculate this inward force we need to know the total surface area of the can available to the air outside the can. Since the can is a cylinder with a total surface area given by 2πrh + 2πr² =
A = 2πr(r + h)
Where h = height of the can = 12cm
r = radius of the can = 6.5cm/2 = 3.25cm
r = diameter /2
A = 2π×3.25 ×(3.25 + 12) = 311.4cm² = 311.4 ×10-⁴ = 0.031m²
Atmospheric pressure, P = 101325Pa = 101325 N/m²
F = P × A
F = 101325 ×0.031.
F = 3141N. Or 3.1 ×10³ N.