To find the surface area of a single cube we first nees to take the cube root of 8cm3 which is 2.
Now we know that the length of each side is 2 and we can find the area of one side by doing 2x2 which is 4.
To find the total surface area of one cube we do 4 times 6 side giving us a total of 24cm2.
To find the total surface area of the 8 individual cubes, we multiply 24cm2 by 8 to give us a total of 192cm2.
Now to find the total surface area of the one large cube, we know that each side of one of the small cubes is 4cm2 and the large cube is set up so that there are two levels of four cubes right on top of each other. So, the total area of each side of the large cube is 4cm2 times 4 which gives us 16cm2.
Then we multiply 16cm2 by 6 sides to give us a total surface area of 96cm2.
The ratio of the surface area of the single large cube comapred to the total surface area of the single cubes is 96:192
We can further simplify this ratio:
96:192
48:96
24:48
12:24
6:12
3:6
1:2
Answer:
vb = 22.13 m/s
So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.
Explanation:
In order to find the speed of roller coaster at Point B, we will use the law of conservation of Energy. In this situation, the law of conservation of energy states that:
K.E at A + P.E at A = K.E at B + P.E at B
(1/2)mvₐ² + mghₐ = (1/2)m(vb)² + mg(hb)
(1/2)vₙ² + ghₐ = (1/2)(vb)² + g(hb)
where,
vₙ = velocity of roller coaster at point a = 0 m/s
hₙ = height of roller coaster at point a = 25 m
g = 9.8 m/s²
vb = velocity of roller coaster at point B = ?
hb = Height of Point B = 0 m (since, point is the reference point)
Therefore,
(1/2)(0 m/s)² + (9.8 m/s²)(25 m) = (1/2)(vb)² + (9.8 m/s²)(0 m)
245 m²/s² * 2 = vb²
vb = √(490 m²/s²)
<u>vb = 22.13 m/s</u>
<u>So, the only thing that was measured here was the height of point A relative to point B. And the Law of Conservation of Energy was used.</u>
Answer:
An atmosphere is the layers of gases surrounding a planet or other celestial body. Earth's atmosphere is composed of about 78% nitrogen, 21% oxygen, and one percent other gases