Answer:
The velocity could be in any direction, but the acceleration is in the direction of the resultant force.
Explanation:
The ball (assuming that we can treat it as a point mass) must obey Newton's 2nd Law, that states that the acceleration produced by a force, is proportional to the applied force, being the mass the proportionality constant.
As the force is the vector, and the mass an scalar, the acceleration vector must be in the same direction as the force vector.
Velocity, instead, can be in any direction: When an object is speeding up is in the same direction as the acceleration, while if it is slowing down, it has just the opposite.
Answer:
the particle arrangement in liquid are close together with no regular arrangement
Answer:
Explanation:
Assuming the squirrel is jumping off the ground, here's what we know but don't really know...
v₀ = 4.0 at 50.0°
So that's not really the velocity we are looking for. We are dealing with a max height problem, which is a y-dimension thing. Therefore, we need the squirrel's upward velocity, which is NOT 4.0 m/s. We find it in the following way:
which gives us that the upward velocity is
v₀ = 3.1 m/s
Moving on here's what we also know:
a = -9.8 m/s/s and
v = 0
Remember that at the very top of the parabolic path, the final velocity is 0. In order to find the max height of the squirrel, we need to know how long it took him to get there. We are using 2 of our 3 one-dimensional equations in this problem. To find time:
v = v₀ + at and filling in:
0 = 3.1 - 9.8t and
-3.1 = -9.8t so
t = .32 seconds.
Now that we know how long it took him to get to the max height, we use that in our next one-dimensional equation:
Δx =
and filling in:
Δx =
and using the rules for adding and subtracting sig fig's correctly, we can begin to simplify this:
Δx = .99 - .50 so
Δx = .49 meters
Change, Alteration, Variation, Remaking etc...
Answer:
E =230.4 MJ
Explanation:
As 1 mole of electron = 6X 10^23 particles.
charge of an electron is 1.6 X 10 ^-19 C
Finding Charge:
(6X10^23 ) (2.7)(1.6X10^-19 C)
i.e. 192 K C
now to find the energy released from electrons
V=E/q
E=V X q
i.e E = 120 V X 192 K C
E =230.4 MJ