Answer:
heat transfer for the process is - 643.3 kJ
Explanation:
given data
mass m = 2 kg
pressure p1 = 500 kPa
temperature t1 = 400°C = 673.15 K
temperature t2 = 40°C = 313.15 K
pressure p2 = 300 kPa
to find out
heat transfer for the process
solution
we know here mass is constant so
m1 = m2
so by energy equation
m ( u2 - u1 ) = Q - W
Q is heat transfer
and in process P = A+ N that is linear spring
so
W = ∫PdV
= 0.5 ( P1+P2) ( V1 - V2)
so for case 1
P1V1 = mRT
put here value
500 V1 = 2 (0.18892) (673.15)
V1 = 0.5087 m³
and
for case 2
P2V2 = nRT
300 V2 = 2 (0.18892) (313.15)
V2 = 0.3944 m³
and
here W will be
W = 0.5 ( 500 + 300 ) ( 0.3944 - 0.5087 )
W = -45.72 kJ
and
Q is here for Cv = 0.83 from ideal gas table
Q = mCv ( T2-T1 ) + W
Q = 2 × 0.83 ( 40 - 400 ) - 45.72
Q = - 643.3 kJ
heat transfer for the process is - 643.3 kJ
Answer:
COP of heat pump=3.013
COP of cycle=1.124
Explanation
W = Q2 - Q1 ----- equation 1
W = work done
Q2 = final energy
Q1 = initial energy
A) calculate the COP of the heat pump
COP =Q2/W
from equation 1
Q2 = Q1 + W = 15 + 7.45 = 22.45 KW
therefore COP =22.45/7.45 = 3.013
B) COP when cycle is reversed
COP = Q1/W
from equation 1
Q1 + W = Q2 ------ equation 2
Q2 = 15 Btu/s = 15 * 1.055 = 15.825 KW therefore from equation 2
Q1 = 8.375 KW
COP =8.375/7.45 = 1.124
Answer:
Sorry it doesnt tall me anythikng
Explanation:
mechanism, in mechanical construction, the means employed to transmit and modify motion in a machine or any assemblage of mechanical parts.