1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inga [223]
3 years ago
8

In the situation shown below, what would the Moon look like from Earth? Sun, Earth and Moon Four Moon Views A. View A B. View B

C. View C D. View
Engineering
1 answer:
Blababa [14]3 years ago
3 0

Answer:

where is the picture?

Explanation:

You might be interested in
Identify factors that can cause a process to become out of control. Give several examples of such factors.
Oliga [24]

Answer:

Explained

Explanation:

This situation can occur because of various factors such as:

  • Gradual deterioration of lubrication and coolant.
  • change of environmental condition such as temperature, humidity, moisture, etc.
  • Change in the properties of incoming raw material
  • An increase or decrease in the temperature of the heat treating operation
  • Debris interfering with the manufacturing process.
4 0
2 years ago
Which of the following best describes the relationship between the World Wide Web and the Internet? А The World Wide Web is a pr
Gwar [14]

Answer:

C

Explanation:

5 0
2 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
The question belongs to Electrical Engineering (Linear System).
-Dominant- [34]
I’m crying looking at that.
5 0
2 years ago
Two identical billiard balls can move freely on a horizontal table. Ball a has a velocity V0 and hits balls B, which is at rest,
Lyrx [107]

Answer:

Velocity of ball B after impact is 0.6364v_0 and ball A is 0.711v_0

Explanation:

v_0 = Initial velocity of ball A

v_A=v_0\cos45^{\circ}

v_B = Initial velocity of ball B = 0

(v_A)_n' = Final velocity of ball A

v_B' = Final velocity of ball B

e = Coefficient of restitution = 0.8

From the conservation of momentum along the normal we have

mv_A+mv_B=m(v_A)_n'+mv_B'\\\Rightarrow v_0\cos45^{\circ}+0=(v_A)_n'+v_B'\\\Rightarrow (v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0

Coefficient of restitution is given by

e=\dfrac{v_B'-(v_A)_n'}{v_A-v_B}\\\Rightarrow 0.8=\dfrac{v_B'-(v_A)_n'}{v_0\cos45^{\circ}}\\\Rightarrow v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0

(v_A)_n'+v_B'=\dfrac{1}{\sqrt{2}}v_0

v_B'-(v_A)_n'=\dfrac{0.8}{\sqrt{2}}v_0

Adding the above two equations we get

2v_B'=\dfrac{1.8}{\sqrt{2}}v_0\\\Rightarrow v_B'=\dfrac{0.9}{\sqrt{2}}v_0

\boldsymbol{\therefore v_B'=0.6364v_0}

(v_A)_n'=\dfrac{1}{\sqrt{2}}v_0-0.6364v_0\\\Rightarrow (v_A)_n'=0.07071v_0

From the conservation of momentum along the plane of contact we have

(v_A)_t'=(v_A)_t=v_0\sin45^{\circ}\\\Rightarrow (v_A)_t'=\dfrac{v_0}{\sqrt{2}}

v_A'=\sqrt{(v_A)_t'^2+(v_A)_n'^2}\\\Rightarrow v_A'=\sqrt{(\dfrac{v_0}{\sqrt{2}})^2+(0.07071v_0)^2}\\\Rightarrow \boldsymbol{v_A'=0.711v_0}

Velocity of ball B after impact is 0.6364v_0 and ball A is 0.711v_0.

5 0
3 years ago
Other questions:
  • You are watching the weather forecast and the weatherman says that strong thunderstorms and possible tornadoes are likely to for
    15·1 answer
  • Explain why different types of equipment are required for proper conditioning of air
    7·1 answer
  • As a top-level executive at your own company, you are worried that your employees may steal confidential data too easily by down
    12·1 answer
  • Please help I need it by today!!!
    10·1 answer
  • Please help will give brainliest please answer all 3
    11·1 answer
  • The input and output signals of a system is related by the following equation: fraction numerator d squared y over denominator d
    11·1 answer
  • A carbon resistor has a resistance of 976 ohms at 0 degrees C. Determine its resistance at 89 degrees C​
    6·1 answer
  • Mention verious medium level and higher level human resources related to engineering​
    6·1 answer
  • What does polarity give you information about?
    10·1 answer
  • 9
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!