Answer:
Explanation:
class Pet:
def __init__(self):
self.name = ''
self.age = 0
def print_info(self):
print('Pet Information:')
print(' Name:', self.name)
print(' Age:', self.age)
class Dog(Pet):
def __init__(self):
Pet.__init__(self)
self.breed = ''
def main():
my_pet = Pet()
my_dog = Dog()
pet_name = input()
pet_age = int(input())
dog_name = input()
dog_age = int(input())
dog_breed = input()
my_pet.name = pet_name
my_pet.age = pet_age
my_pet.print_info()
my_dog.name = dog_name
my_dog.age = dog_age
my_dog.breed = dog_breed
my_dog.print_info()
print(' Breed:', my_dog.breed)
main()
Answer:
The answer is not in the options. It is one-fourth.
Explanation:
As of 2017, it was recorded that nuclear power supplies 25% of electricity in Europe. That's 1/4 of the total electrical power supply.
Answer:
Program that removes all spaces from the given input
Explanation:
// An efficient Java program to remove all spaces
// from a string
class GFG
{
// Function to remove all spaces
// from a given string
static int removeSpaces(char []str)
{
// To keep track of non-space character count
int count = 0;
// Traverse the given string.
// If current character
// is not space, then place
// it at index 'count++'
for (int i = 0; i<str.length; i++)
if (str[i] != ' ')
str[count++] = str[i]; // here count is
// incremented
return count;
}
// Driver code
public static void main(String[] args)
{
char str[] = "g eeks for ge eeks ".toCharArray();
int i = removeSpaces(str);
System.out.println(String.valueOf(str).subSequence(0, i));
}
}
Answer:
0.08kg/s
Explanation:
For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.
The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.
finally you use the two previous equations to make a system and find the mass flows
I attached procedure
Answer:


Explanation:
= Area of section 1 = 
= Velocity of water at section 1 = 100 ft/min
= Specific volume at section 1 = 
= Density of fluid = 
= Area of section 2 = 
Mass flow rate is given by

The mass flow rate through the pipe is 
As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

The speed at section 2 is
.