Answer:
Professor Hawking had just turned 21 when he was diagnosed with a very rare slow-progressing form of ALS, a form of motor neurone disease (MND). He was at the end of his time at Oxford when he started to notice early signs of his disease. He was getting more clumsy and fell over several times without knowing why.
Explanation:
none
Answer:
An object moving in certain direction with an acceleration in the perpendicular direction. The above condition is possible . Example of such situation in life would be when stone tied to a string whirling in a circular path
Hope this helps and pls mark as BRAINLIEST :)
The incorrect statement about electromagnetic waves is C. induction of electric fields by changing magnetic fields only occurs if a conducting material is present.
Electromagnetic waves do not rely on any medium for propagation, which means that the generation of fields is irrespective of the presence of a conducting material.
First, when the student added the layers of wax over each other, this became a representation of sedimentary rocks.
Then the student folded his/her palm and squeezed the layers of wax. This means that the student applied heat and pressure on the wax (sedimentary rocks)
Referring to the diagram below which represents the rock cycle, we will find that applying heat and pressure on sedimentary rocks would convert these rocks into metamorphic rocks.
Based on the above, the best choice would be:<span>d. Heat and pressure can change sedimentary rocks into metamorphic rocks.</span>
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²