Answer:
41°
Explanation:
Kinetic energy at bottom = potential energy at top
½ mv² = mgh
½ v² = gh
h = v²/(2g)
h = (2.4 m/s)² / (2 × 9.8 m/s²)
h = 0.294 m
The pendulum rises to a height of above the bottom. To determine the angle, we need to use trigonometry (see attached diagram).
L − h = L cos θ
cos θ = (L − h) / L
cos θ = (1.2 − 0.294) / 1.2
θ = 41.0°
Rounded to two significant figures, the pendulum makes a maximum angle of 41° with the vertical.
Answer:
Explanation:
which is the final velocity minus the initial velocity in the numerator, and the change in time in the denominator. For us:
so
a = .92 m/s/s (NOT negative because you're speeding up)
This condition is called Galileo's Law of Inertia which states that all bodies accelerate at the smart rate , no matter what are their masses or size. Inertia is that tendency of matter to resist changes in its velocity. <span>Isaac Newton's first law of motion captures the concept of inertia. </span>
Answer: MOTION
Explanation:
motion is defined as the displacement of an object with respect to time relative to a stationary object (reference point). A good example of an object that can serve as a reference point includes: a tree or a building. The movement of a body at constant speed towards a particular direction at regular intervals of time can be determined and it's called uniform motion.
There are different types of motion, these includes: simple harmonic motion,
linear motion,
circular motion,
Brownian motion,
Rotatory motion
Answer: 2.7 m/s
Explanation:
Given the following :
Period (T) = 8.2 seconds
Radius = 3.5 m
The tangential speed is given as:
V = Radius × ω
ω = angular speed = (2 × pi) / T
ω = (2 × 22/7) / 8.2
ω = 6.2857142 / 8.2
ω = 0.7665505
Therefore, tangential speed (V) equals;
r × ω
3.5 × 0.7665505 = 2.6829268 m/s
2.7 m/s