Answer:
Qsinθ/4πε₀R²θ
Explanation:
Let us have a small charge element dq which produces an electric field E. There is also a symmetric field at P due to a symmetric charge dq at P. Their vertical electric field components cancel out leaving the horizontal component dE' = dEcosθ = dqcosθ/4πε₀R² where r is the radius of the arc.
Now, let λ be the charge per unit length on the arc. then, the small charge element dq = λds where ds is the small arc length. Also ds = Rθ.
So dq = λRdθ.
Substituting dq into dE', we have
dE' = dqcosθ/4πε₀R²
= λRdθcosθ/4πε₀R²
= λdθcosθ/4πε₀R
E' = ∫dE' = ∫λRdθcosθ/4πε₀R² = (λ/4πε₀R)∫cosθdθ from -θ to θ
E' = (λ/4πε₀R)[sinθ] from -θ to θ
E' = (λ/4πε₀R)[sinθ]
= (λ/4πε₀R)[sinθ - sin(-θ)]
= (λ/4πε₀R)[sinθ + sinθ]
= 2(λ/4πε₀R)sinθ
= (λ/2πε₀R)sinθ
Now, the total charge Q = ∫dq = ∫λRdθ from -θ to +θ
Q = λR∫dθ = λR[θ - (-θ)] = λR[θ + θ] = 2λRθ
Q = 2λRθ
λ = Q/2Rθ
Substituting λ into E', we have
E' = (Q/2Rθ/2πε₀R)sinθ
E' = (Q/θ4πε₀R²)sinθ
E' = Qsinθ/4πε₀R²θ where θ is in radians
Answer:
η₁ = 2.6
Explanation:
Here, we will use snell's law to calculate the refractive of the substance:

where,
η₁ = refractive index of first substance = ?
η₂ = refractive index of second substance = 1.5
θ₁ = angle of incidence = 30°
θ₂ = angle of refraction = 60°
Therefore,

<u>η₁ = 2.6</u>
Explanation:
Momentum is conserved.
a) In the first scenario, Olaf and the ball have the same final velocity.
mu = (M + m) v
(0.400 kg) (10.9 m/s) = (70.2 kg + 0.400 kg) v
v = 0.0618 m/s
b) In the second scenario, the ball has a final velocity of 8.10 m/s in the opposite direction.
mu = mv + MV
(0.400 kg) (10.9 m/s) = (0.400 kg) (-8.10 m/s) + (70.2 kg) v
v = 0.108 m/s
Answer:
1. G.P.E = 24 J
2. center of mass
Explanation:
Given the following data;
Mass = 2kg
Height, h = 1.2m
Acceleration due to gravity = 9.8 N/kg or m/s².
To find the gravitational potential energy;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
- G.P.E represents potential energy measured in Joules.
- m represents the mass of an object.
- g represents acceleration due to gravity measured in meters per seconds square.
- h represents the height measured in meters.
Substituting into the formula, we have;

G.P.E = 23.52 to 2 S.F = 24 Joules.
Translation kinetic energy is defined as the energy of a system due to the motion of the system’s center of mass. The center of mass is typically where the mass of the object or particle is concentrated.