(a) The distance of the image formed by the concave mirror is 19.1 cm.
(b) The image formed is diminished and real.
<h3>
Image distance </h3>
The distance of the image formed by the concave mirror is calculated as follows;
1/f = 1/v + 1/u
1/v = 1/f - 1/u
1/v = 1/15 - 1/70
1/v = 0.05238
v = 1/0.05238
v = 19.1 cm
The image distance is smaller than object distance, thus the image formed is diminished and real.
Learn more about concave mirror here: brainly.com/question/13164847
#SPJ1
C explanation: There are many examples of fossils found on separate continents and nowhere else, suggesting the continents were once joined. If Continental Drift had not occurred, the alternative explanations would be: They swam to the other continent/s in breeding pairs to establish a second population. ...
Answer:
noble gases are basically a group of gases that are similar in their chemical compounds, theres six of them : helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn).
~batmans wife dun dun dun.....
Answer:
7.5 m/s
Explanation:
We can find its velocity when it reaches the buoy by applying one of Newton's equations of motion:

where v = final velocity
u = initial velocity
a = acceleration
s = distance traveled
From the question:
u = 28 m/s
a = -4 
s = 91 m
Therefore:

The velocity of the boat when it reaches the buoy is 7.5 m/s.
To solve this problem we will apply the concept related to the kinetic energy theorem. Said theorem states that the work done by the net force (sum of all forces) applied to a particle is equal to the change experienced by the kinetic energy of that particle. This is:


Here,
m = mass
v = Velocity
Our values are given as,


Replacing,


Therefore the mechanical energy lost due to friction acting on the runner is 907J