The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
Answer:
The velocity of the Mr. miles is 17.14 m/s.
Explanation:
It is given that,
Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding, h = 15 m
We need to find the velocity of the Mr. Miles at the bottom of the slide. It is a case of conservation of energy which states that the total energy of the system remains conserved. Let v is the velocity of the Mr. miles. So,

g is the acceleration due to gravity

v = 17.14 m/s
So, the velocity of the Mr. miles is 17.14 m/s. Hence, this is the required solution.
Answer:
Temperature decreases because the number of collision of the molecules decreases as they escape or evaporate. Molecules are in constant motion. Increase in temperature leads to increase in average kinetic energy of the molecules.
First we need to convert the angular speed from rpm to rad/s. Keeping in mind that


the angular speed is

And so now we can calculate the tangential speed of the child, which is the angular speed times the distance of the child from the center of the motion: