Answer:

v=343m/s
Explanation:
We have to take into account the expressions

if we assume that 256Hz is the fundamental frequency we have

and for wavelength

hope this helps!!
Answer:
B. inverse plot, 0.51 kilograms/meter3
Explanation:
First of all, we note that the relationship between the altitude and the atmospheric density is an inverse relationship. In fact, an inverse relationship is a relationship between the x-variable and the y-variable of the form

Therefore, as the x increases, the y decreases, and as the x decreases, they increases. This is exactly what occurs with the altitude and the atmospheric density in this plot: as the altitude increases, the density decreases, and vice-versa.
Moreover, we can infer the value of the atmospheric density at an altitude of 1,291 km. This point is located between point A (2550 km) and point B(1000 km), so the density must have a value between 0.30 kg/m^3 and 0.54 kg/m^3, so the correct choice is
B. inverse plot, 0.51 kilograms/meter3
Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
<u>CB = 4.45 x 10⁻⁹ F = 4.45 nF</u>