The sphere has a constant potential. It is the electric field.

In the sphere, then

Outside the sphere, then

The elements of the electric field include

Which becomes,

<h3>
In a consistent electric field, is force constant?</h3>
Similar to an ordinary object in the uniform gravitational field near the Earth's surface, a charged item in a uniform electric field experiences a constant force and consequently experiences a uniform acceleration. The vector cross product of p and E determines the torque's direction.
If the charge is positive, the force either moves in the same direction as E or in the opposite direction (if charge is negative).
A torque is experienced by an electric dipole (p) in an even electric field (E). The vector cross product of p and E determines the torque's direction.
To learn more about uniform electric field, visit
brainly.com/question/17426130
#SPJ4
The equilibrium constant of the reaction at 25⁰c will be 426827.5.
<u />
<u>Equilibrium constant</u> :The equilibrium constant comes from the chemical equilibrium law. For the chemical equilibrium state, at a fixed constant temperature, the ratio of the product of the reaction's multiplication to the concentration of its reactants' multiplication, and each is raised to the power to the corresponding coefficients of the elements in the reaction.
The chemical equilibrium is given by for a general chemical reaction.
a. A+ b. B ⇌ c. C+ d. D,.
Kc =[C]c [D]d/[A]a [B]b.
<u>Gibb's free energy</u> :The second law of thermodynamics can be arranged in such a way that it gives a new expression when a chemical reaction happens at a constant temperature and constant pressure.
G=H-TS
T=25⁰c
G=51.4 x 10³J

k= equilibrium constant ,G=Gibbs free energy ,n= no. of moles ,R=Gas constant ,T=temperature ,Z=compressibility


k=51.4 x 10³ x 8.3 + 8.3 x 25
k=426827.5
To learn equilibrium constant-
<u>brainly.com/question/19669218</u>
#SPJ4
The cryosphere is composed of all the frozen water on Earth.
Answer: 75.02 m
Explanation:
u = 0 ( starts from rest )
v = 50 m/s
t = 3 s
( i ) a = v - u / t
= 50 - 0 /3
= 16.67
( ii ) s = ut + 1/2 at²
= 0 × 3 + 1/2 × 16.67 × 3 × 3
= <u>75.02 m</u>
Hope this helps...
Answer:
250Nm
Explanation:
Given parameters:
Length of the long pry bar = 1m
Force acting on it = 250N
Angle = 90°
Unknown:
Amount of torque applied = ?
Solution:
Torque is the turning force on a body that causes the rotation of the body.
The formula is given as:
Torque = Force x r Sin Ф
r is the distance
So;
Torque = 250 x 1 x sin 90 = 250Nm