1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SpyIntel [72]
3 years ago
11

Use the​ power-reducing formulas to rewrite the expression as an equivalent expression that does not contain powers of trigonome

tric functions greater than 1. 40sin^2xcos^2x
Mathematics
2 answers:
ratelena [41]3 years ago
7 0

Answer:

x = 0.175\cdot (1-\cos 4\cdot \theta)

Step-by-step explanation:

Let use the following trigonometric identities:

\sin^{2}\theta = \frac{1-\cos 2\cdot \theta}{2} \\\cos^{2}\theta = \frac{1+\cos 2\cdot \theta}{2}

Then, the equation is simplified by substituting its components:

x = 1.40\cdot \left(\frac{1-\cos 2\cdot \theta}{2}  \right)\cdot \left(\frac{1+\cos 2\cdot \theta}{2} \right)

x = 0.35\cdot (1-\cos^{2}2\cdot \theta)

x = 0.35\cdot \sin^{2}2\cdot \theta

x = 0.35\cdot \left(\frac{1-\cos 4\cdot \theta}{2}  \right)

x = 0.175\cdot (1-\cos 4\cdot \theta)

zalisa [80]3 years ago
4 0

Answer:

(1/8) - (1/8)* [cos (4x)]

Step-by-step explanation:

We will apply the corresponding formulas and through algebra we will reach the result in the following steps:

Sin^2 (x) * Cos^2 (x) = {[1 - cos (2x)]/2}*{[1 + cos (2x)]/2}

Sin^2 (x) * Cos^2 (x) =[ 1 - cos^2 (2x)]/4

Sin^2 (x) * Cos^2 (x) = (1/4) - (1/4) * cos^2 (2x)

Sin^2 (x) * Cos^2 (x) =  (1/4) - (1/4) * {[1 + cos (2*2x)]/2}

Sin^2 (x) * Cos^2 (x) =  (1/4) - (1/8) * [1 + cos (4x)]

Sin^2 (x) * Cos^2 (x) =  (1/4) - (1/8) - (1/8)* [cos (4x)]

Sin^2 (x) * Cos^2 (x) =  (1/8) - (1/8)* [cos (4x)]

You might be interested in
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
Could somebody answer this question
Tpy6a [65]
We did this same kind of problem in school. All we did was divide the those 2 numbers to figure out the unit price. So, 20/5 = 4 $ per CD.
6 0
3 years ago
Read 2 more answers
Three differnt way to wright 3,705.692
Aleks [24]

Answer:

3,705.692

Three thousand seven hundred and five thoudand six hundred and ninety two thousandths.

3 thousands, 7 hundreds, 5 ones, 6 tenths, 9 hundredths, 2 thousandths

Step-by-step explanation:

Simple math.

6 0
2 years ago
A $830 iphone has a 20%
Mila [183]

Answer:

$614.2

Step-by-step explanation:

Um I just calculated it. I'm in Algebra 2 so it's light work

4 0
2 years ago
Will give brainliest!<br><br> Give an example of an undefined term and how it relates to a circle
Pani-rosa [81]

Answer:

an example of an undefined term and how it relates to a circle

Step-by-step explanation:

To learn why and more about circles go to this website:

windowseat.ca/circles

8 0
3 years ago
Other questions:
  • What is the value of x?
    11·1 answer
  • What is the reason that &lt;ABD is congruent to &lt;CBD?
    10·1 answer
  • The graphed line can be expressed by which equation?
    13·2 answers
  • Question 4 (1 point)
    14·2 answers
  • Change3/4 to twelfths.
    9·1 answer
  • Answer the last one the question os list five numbers that have 3,5 and 7 as prime Factors .
    5·1 answer
  • Simplify the square root of 4x^6
    5·1 answer
  • Hello please help i’ll give brainliest
    15·1 answer
  • You have $550 in a savings account that earns 3% simple interest each year. How much will be in your account in 10 years? *
    8·1 answer
  • Please help I don't know the answer​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!