Answer:
Knowing this, researchers from the University of Southern Denmark decided to investigate the size of these hypothetical hidden particles. According to the team, dark matter could weigh more than 10 billion billion (10^9) times more than a proton.
Explanation:
If this is true, a single dark matter particle could weigh about 1 microgram, which is about one-third the mass of a human cell (a typical human cell weighs about 3.5 micrograms), and right under the threshold for a particle to become a black hole.
I really hope that this helps. H-F because the difference in electronegativity is the greatest, about 1.9 on the Pauling scale. The term means which bond has the greatest polarity and is thus most similar to an ionic bond, which involves the transfer of an electron (in opposition to covalent bonds, which share electrons). It is H-F because out of all the atoms here bonded with H, ie hydrogen, F is the most electronegative which means it can pull the bonded electrons to itself more than can Cl, O, and N. <span>That means a stronger polarization of the electron cloud forming the bond with hydrogen and therefore a stronger ionic character.</span>
Answer:
3.74%
Explanation:
We express a solution's volume by volume percent concentration, % v/v,
Take the ratio of the isopropyl alcohol (IPA) volume to the total volume of the solution, which is 1800 mL of water+ 70 mL of IPA,
and multiply by 100 to get the percentage: 70/(1800+70) *100 = 0.0374*100 = 3.74%