Trabajando con porcentajes, concluimos que la pérdida es de $4800.
<h3>
¿A cuánto asciende la pérdida?</h3>
Sabemos que la inversión inicial es de $60000, y de esta cantidad, se pierde un 8%.
Entonces la pérdida va a ser el 8% de $60000.
Podemos escribir las relaciones:
$60000 = 100%
x = 8%
Queremos resolver esto para x, tomando el cociente entre esas relaciones y resolviendo para x obtenemos:
x = $60000*(8%/100%) = $60000*0.08 = $4800
Así, concluimos que la pérdida es de $4800.
Sí quieres aprender más sobre porcentages:
brainly.com/question/843074
#SPJ1
Answer:
AC ≈ 17.3 , BC ≈ 5.3
Step-by-step explanation:
using the tangent ratio in right triangle ACD
tan51° =
=
=
( multiply both sides by 14 )
14 × tan51° = AC , then
AC ≈ 17.3 ( to the nearest tenth )
using the cosine ratio in right triangle ABC
cos72° =
=
=
( multiply both sides by 17.3 )
17.3 × cos72° = BC , then
BC ≈ 5.3 ( to the nearest tenth )
(a) If <em>f(x)</em> is to be a proper density function, then its integral over the given support must evaulate to 1:

For the integral, substitute <em>u</em> = <em>x</em> ² and d<em>u</em> = 2<em>x</em> d<em>x</em>. Then as <em>x</em> → 0, <em>u</em> → 0; as <em>x</em> → ∞, <em>u</em> → ∞:

which reduces to
<em>c</em> / 2 (0 + 1) = 1 → <em>c</em> = 2
(b) Find the probability P(1 < <em>X </em>< 3) by integrating the density function over [1, 3] (I'll omit the steps because it's the same process as in (a)):

You would need to come in 583.6 or 584 times