Answer:
<h2>A. (0, 4)</h2>
Step-by-step explanation:
The equation of a circle:

(h, k) - center
r - radius
We have the equation:

h = 0, k = 4, r = 5
Answer:
It would roll in this direction.

Step-by-step explanation:
It would roll to the direction of maximum decrease, which is the -1 times the direction of maximum increase, which is given by the gradient of the function.
Since

For this case, the gradient of your function would be

And -1 times the gradient of your function would be

Then, at

So it would go towards

The magnitud of that vector is

and to conclude it would roll in this direction.

1. The formula for annual compound interest, including principal sum, is:
A = P (1 + r/n)ⁿˣ
Where:
A = the future value = ?
P = the principal investment amount = $2000
r = interest rate = 4%
n = the number of times that interest is compounded per year = 4
x = the number of years = 5
Calculations:
A = 2000 (1 + 0.04/4)²⁰
A = 2000 (1 + 0.01)²⁰
A = 2000 (1.01)²⁰
A = 2000 ₓ 1.22
A = $2440.38
2. The formula for annual compound interest, including principal sum, is:
A = P (1 + r/n)ⁿˣ
Where:
A = the future value = ?
P = the principal investment amount = $50
r = interest rate = 48%
n = the number of times that interest is compounded per year = 12
x = the number of years = 2
Calculations:
A = 50 (1 + 0.48/12)²⁴
A = 50 (1 + 0.04)²⁴
A = 50 (1.04)²⁴
A = 50 ₓ 2.56
A = $128.16
3. The formula for annual compound interest, including principal sum, is:
A = P (1 + r/n)ⁿˣ
Where:
A = the future value = ?
P = the principal investment amount = $50
r = interest rate = 4%
n = the number of times that interest is compounded per year = 12
x = the number of years = 3
Calculations:
A = 50 (1 + 0.04/12)³⁶
A = 50 (1 + 0.003)³⁶
A = 50 (1.003)³⁶
A = 50 ₓ 1.12
A = $56.36
Answer:
are there answer choices
Step-by-step explanation:
sorry i did not answer
Answer:
Step-by-step explanation:
Plugin x = 0 & y = -2 in the LHS of the equation. After substituting, if you get the RHS, then this point is the solution of the equation.
x - 2y = 0 - 2*(-2)
= 0 + 4
= 4 = RHS.
(0,-2) is solution of the equation.