<span>Suppose 2x + y = 15 -----eq 1
. x + 3y = 20 -----eq 2.
Multiplying eq (1) by 1 and (2) by 2 and subtracting the result
We have: 2x + y = 15 and 2x +6y =40.If we subtract, we have y - 6y = 15 - 40.
So we have -5y = -25. y is 5. Substiting into eq (1), we have 2x + 5 = 15. 2x = 15-5 =10 Hence X =5.Hence option B is the correct option.</span>
Answer:
Number of positive four-digit integers which are multiples of 5 and less than 4,000 = 600
Explanation:
Lowest four digit positive integer = 1000
Highest four digit positive integer less than 4000 = 3999
We know that multiples of 5 end with 0 or 5 in their last digit.
So, lowest four digit positive integer which is a multiple of 5 = 1000
Highest four digit positive integer less than 4000 which is a multiple of 5 = 3995.
So, the numbers goes like,
1000, 1005, 1010 .....................................................3990, 3995
These numbers are in arithmetic progression, so we have first term = 1000 and common difference = 5 and nth term(An) = 3995, we need to find n.
An = a + (n-1)d
3995 = 1000 + (n-1)x 5
(n-1) x 5 = 2995
(n-1) = 599
n = 600
So, number of positive four-digit integers which are multiples of 5 and less than 4,000 = 600
Let x be the total price. And you paid 75% of it which is $135.
x * 75/100 = 135
x = 180
You would have paid $180 if you had not used coupons.
Answer:
No solution is possible from the information given.
The area of the lawn is unknown.
Step-by-step explanation:
Answer:
(4/3, 7/3)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
<u>Algebra I</u>
- Terms/Coefficients
- Coordinates (x, y)
- Solving systems of equations of using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
7x - y = 7
x + 2y = 6
<u>Step 2: Rewrite Systems</u>
Equation: x + 2y = 6
- [Subtraction Property of Equality] Subtract 2y on both sides: x = 6 - 2y
<u>Step 3: Redefine Systems</u>
7x - y = 7
x = 6 - 2y
<u>Step 4: Solve for </u><em><u>y</u></em>
<em>Substitution</em>
- Substitute in <em>x</em>: 7(6 - 2y) - y = 7
- Distribute 7: 42 - 14y - y = 7
- Combine like terms: 42 - 15y = 7
- [Subtraction Property of Equality] Subtract 42 on both sides: -15y = -35
- [Division Property of Equality] Divide -15 on both sides: y = 7/3
<u>Step 5: Solve for </u><em><u>x</u></em>
- Define original equation: x + 2y = 6
- Substitute in <em>y</em>: x + 2(7/3) = 6
- Multiply: x + 14/3 = 6
- [Subtraction Property of Equality] Subtract 14/3 on both sides: x = 4/3