4.48 mol Cl2. A reaction that produces 0.35 kg of BCl3 will use 4.48 mol of Cl2.
(a) The <em>balanced chemical equation </em>is
2B + 3Cl2 → 2BCl3
(b) Convert kilograms of BCl3 to moles of BCl3
MM: B = 10.81; Cl = 35.45; BCl3 = 117.16
Moles of BCl3 = 350 g BCl3 x (1 mol BCl3/117.16 g BCl3) = 2.987 mol BCl3
(c) Use the <em>molar ratio</em> of Cl2:BCl3 to calculate the moles of Cl2.
Moles of Cl2 = 2.987 mol BCl3 x (3 mol Cl2/2 mol BCl3) = 4.48 mol Cl2
Answer:
The characteristic best supports its formation from sedimentary processes is "It has many layers."
Explanation:
When sediments deposit and solidifies then it results in the formation of sedimentary rocks.The given picture shows that this rock has many horizontal lines of different width and color. This shows that this rock is formed by many different layers. Thus, we can conclude that the characteristic which best supports its formation from sedimentary processes is that it has many layers. The layers present gives us an idea about the past events that has occurred for the formation of the or the deposition of the sedimentary rock.
Answer: Mercury-194 is an unstable isotope and hence is radioactive.
Explanation: Mercury-194 is an isotope of mercury, having formula 
Number of protons in this isotope = 80
Number of neutrons in this isotope = 114
This isotope is radioactive in nature and under decay process by Electron Capture.
Electron capture reactions are the reactions in which a proton in a nucleus absorbs an electron and convert it into neutron. The resulting nucleus will have a decreased atomic number and same atomic mass.
Reaction for electron capture of mercury-194 follows:

Answer:
Image result for What evidence in Side View lets you know that upwelling is happening in these locations?
Winds blowing across the ocean surface often push water away from an area. When this occurs, water rises up from beneath the surface to replace the diverging surface water. This process is known as upwelling.
Explanation: