There are 6.33 × 10²⁵ hydrogen atoms in this solution in total.
<h3>Explanation</h3>
- There are two hydrogen atoms in each water
molecule. - There are three hydrogen atoms in each ammonia
molecule.
2.10 × 10²⁵ water molecules and 7.10 × 10²⁴ ammonia molecules will contain
hydrogen atoms in total.
Answer:
Explanation:
To solve the problem, we must know the kind of compounds we are dealing with.
For the first compound, P1 and second compound P2:
N O N O
Mass percent 64.17 35.73 47.23 52.79
Atomic mass 14 16 14 16
Number of
moles 64.17/14 35.73/16 47.23/14 52.79/16
4.58 2.23 3.37 3.30
Simplest
ratio 4.58/2.23 2.23/2.23 3.37/3.30 3.3/3.3
2 1 1 1
P1 compound is N₂O
P2 compound is NO
These are the compounds,
In N₂O = 28:16
NO = 14:16
This is the ratio of nitrogen to a fixed mass of oxygen for the two compounds.
Answer:
sgsgueiehéyegeysuegeteue2
To determine the pressure in units of kPa, we need to use a conversion factor to convert the units from mmHg to kPa. A conversion factor is a value that would relate two different units and is multiplied or divide to the original measurement depending on what is units is asked. From literature, 1 atm is equal to 760 mmHg and it is also equal to 101.325 kPa. We use these factors to convert the given value. We do as follows:
2150 mmHg ( 1 atm / 760 mmHg ) ( 101.325 kPa / 1 atm ) = 286.643 kPa
Therefore, the closest value from the choices is the second one which has the value of 287, this would be answer.
Solution:
Since we have ml=-1
it shows that it has two 2e- i;e it fond in 2nd subshell in f orbital. And each subshell can hold 2 e-.
Thus the required answer is 2 electrons hold by an atom.