Answer:
0.054 mol O
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of carbon in a sample of acetic acid. How many moles of oxygen are in the sample?</em>
<em />
Step 1: Given data
- Chemical formula of acetic acid: CH₃CO₂H
- Moles of carbon in the sample: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula, the molar ratio of C to O is 2:2.
Step 3: Calculate the moles of oxygen in the sample
We will use the molar ratio to determine the moles of oxygen accompanying 0.054 moles of carbon.
0.054 mol C × (2 mol O/2 mol C) = 0.054 mol O
Answer:
24.9%
Explanation:
According to this question, mole fraction of NaCl in an aqueous solution is 0.0927. This means that the mole percent of NaCl in the solution is:
0.0927 × 100 = 9.27%
Let's assume that the solution contains water (solvent) + NaCl (solute), hence, the mole fraction of water will be;
100% - 9.27% = 90.73%
THEREFORE, it can be said that, NaCl contains 0.0927moles while H2O contains 9.073moles
N.B: mole = mass/molar mass
Given the Molar Mass
NaCl: 58.44 g/mol
H2O: 18.016 g/mol
For NaCl;
0.0927 = mass/58.44
mass = 0.0927 × 58.44
5.42g
For H2O;
9.073 = mass/18.016
mass = 9.073 × 18.016
= 16.35g
Total mass of solution = 16.35g + 5.42g = 21.77g
Mass percent of NaCl = mass of NaCl/total mass × 100
% mass of NaCl = 5.42g/21.77g × 100
= 0.249 × 100
= 24.9%
Answer:
The partial pressure of oxygen in the mixture is 296 mmHg.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone.
This relationship is due to the assumption that there are no attractive forces between the gases.
So, in this case, the total pressure is:
PT=Phelium + Pnitrogen + Poxygen
You know:
- PT= 756 mmHg
- Phelium= 122 mmHg
- Pnitrogen= 338 mmHg
- Poxygen= ?
Replacing:
756 mmHg= 122 mmHg + 338 mmHg + Poxygen
Solving:
756 mmHg - 122 mmHg - 338 mmHg = Poxygen
Poxygen= 296 mmHg
<u><em>The partial pressure of oxygen in the mixture is 296 mmHg.</em></u>
A: Xylem transports and stores water and water-soluble nutrients in vascular plants. Phloem is responsible for transporting sugars, proteins, and other organic molecules in plants.
Answer: 5.84x10^4
Explanation: You start with (9.00x10^26 atoms)x(1 mol/ 6.022x10^23)x(39.10 g/1 mol)