Answer:A
Explanation:
In the Biuret test, the copper ions bind covalently to the amino groups as shown in the image to form a violet complex. This violet complex is responsible for the colour change as shown
Answer:
The Atomic Number of the atom of an element whose model is given is "8" that is option no. 'C' in the question.
Explanation:
An Atom comprises of 3 basic structures that are Protons, Neutrons and Electrons. The central part is the Nucleus which contains protons and neutrons having positive charge and no charge respectively. The electrons are revolving around the nucleus in electronic shells having the negative charge.
<u><em>ATOMIC NUMBER: </em></u>
Atomic number is the number of protons present inside the nucleus of an atom and it determines the place of that particular atom in the <u>Periodic Table.</u>
In the model, given in the question, the nucleus contains 2 types of balls dark gray colored and light gray colored. The key at the bottom shows the dark gray colored ball as having a positive charge and thus it represents the atomic number for the given atom of element which is <u><em>EIGHT (8).</em></u>
So, the atomic number for the given atom is 8 which is element OXYGEN.
Answer:
25 grams of Mg(OH)2 will be produced by 14.424 gram of Mg3N2
Explanation:
The balanced equation is
Mg3N2 + 6H2O -> 3Mg(OH)2 + 2NH3
Molecular weight of magnesium nitride = 100.9494 g/mol
Molecular weight of magnesium hydroxide = 58.3197 g/mol
one mole of Mg3N2 produces three moles of 3Mg(OH)2
100.9494 g/mol of Mg3N2 produces 3* 58.3197 g/mol of Mg(OH)2
1 gram of Mg3N2 produces
grams of Mg(OH)2
Or 1.733 grams of Mg(OH)2 will be produced by 1 gram of Mg3N2
25 grams of Mg(OH)2 will be produced by 14.424 gram of Mg3N2
Answer: 1560632 joules
Explanation:
The change in thermal energy (Q) required to heat ice depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that:
Q = ?
Mass of frozen water (ice) = 1kg
C = 4184 J/(kg K)
Φ = (Final temperature - Initial temperature)
= 100°C - 0°C = 100°C
Convert 100°C to Kelvin
(100°C + 273) = 373K
Then, Q = MCΦ
Q = 1kg x 4184 J/(kg K) x 373K
Q = 1560632 joules
Thus, the change in thermal energy is 1560632 joules