The formula of density is mass / volume
This means that
- high mass, low volume = high density
- high mass, high volume = so-so
- low mass, high volume = low density
From the graph shown,
D has the lowest density because it has low mass yet high volume.
<span>A covalent bond is a bond formed by atom sharing.
In water molecule, there are twice the number of hydrogen atoms than the oxygen atoms. Its structure is H-O-H. The electronegative difference between the H and O allows them to be polar because on side there is positive charge and on another side there is negative charge.</span>
Heptane means seven carbon atoms and since the general formula is CnH2n+2, heptane will be C7H16
The molar<span> volume of an ideal gas is therefore 22.4 dm</span>3<span> at </span>stp<span>. And, of course, you could redo this calculation to find the volume of 1 mole of an ideal gas at room temperature and pressure - or any other temperature and pressure.</span>
Answer:
Approximately 56.8 liters.
Assumption: this gas is an ideal gas, and this change in temperature is an isobaric process.
Explanation:
Assume that the gas here acts like an ideal gas. Assume that this process is isobaric (in other words, pressure on the gas stays the same.) By Charles's Law, the volume of an ideal gas is proportional to its absolute temperature when its pressure is constant. In other words
,
where
is the final volume,
is the initial volume,
is the final temperature in degrees Kelvins.
is the initial temperature in degrees Kelvins.
Convert the temperatures to degrees Kelvins:
.
.
Apply Charles's Law to find the new volume of this gas:
.