<em>K</em> = 2.4 × 10^(-72)
<em>Step 1</em>. Determine the <em>value of n
</em>
Zn^(2+) + 2e^(-) → Zn
2Cl^(-) → Cl_2 + 2e^(-)
Zn^(2+) + 2Cl^(-) → Zn + Cl_2
∴ <em>n</em> = 2
<em>Step 2</em>. Calculate <em>K</em>
log<em>K</em> = <em>nE</em>°/0.0592 V = [2 × (-2.12 V)]/0.0592 V = -71.62
<em>K</em> = 10^(-71.62) = 2.4 × 10^(-72)
Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Answer:
d
Explanation:
i domt know smskdfjfjhfjdlskdmd
dmf f dmd!! dfdem
mfdmdlss
w so do to to cm cm full do DL cl cl FLP to do cl
This reaction is most likely to fall under SN2 because the
thing called carbonication does not occur in SN1. The carbon forms a partial
bond with the nucleophile during the intermediate phase and the leaving group.
So for this question the reaction will fall under SN2.
Answer:
I Think it might be A! I hope I am right!