The first expression can be simplified by combining like terms.
First, the terms "4b" and "-3b" can be combined to form "b"
Then, the terms "-7" and "9" can be combined to form "2"
Finally, we simply put these two final terms together, to form "b+2"
Hence, 4b-7-3b+9 is equal to be + 2.
Hope this helps!
Answer:
Damian swam, ran, and raced his bike for a grand total of 35.30 miles
Step-by-step explanation:
15.01+12.4= 27.41 miles
27.41+7.89= 35.30 miles
<span>product of (3.7 × 104) and 2
</span>
answer is A.) 7.4 × 104
You can set up two equations from the information given. I will set them up for you:
32 = 4x + 2y
36 = 5x + 2y
Let's solve the first equation to come up with a value for y.
32 = 4x + 2y
32 - 4x = 2y
16 - 2x = y
Now we plug y into the other equation.
36 = 5x + 2(16-2x)
36 = 5x + 32 - 4x
4 = x
Now we have our real x value and we can plug it into the first equation.
32 = 4(4) + 2y
32 = 16 + 2y
16 = 2y
8 = y
Since x = 4 and y = 8, you get the final coordinates of (4,8).
Your answer is the second statement provided above.
Answer:
0.3557 = 35.57% probability that one selected subcomponent is longer than 118 cm.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a mean of 116 cm and a standard deviation of 5.4 cm.
This means that 
Find the probability that one selected subcomponent is longer than 118 cm.
This is 1 subtracted by the pvalue of Z when X = 118. So



has a pvalue of 0.6443
1 - 0.6443 = 0.3557
0.3557 = 35.57% probability that one selected subcomponent is longer than 118 cm.