Answer:
Usually have a low relief, can be interior, and can be coastal.- are phrases that describe typical features of plains.
The number of moles of C present in C₅H₁₂ that contains 22.5 g of H is 9.375 moles
<h3>How to determine the mass of C₅H₁₂ that contains 22.5 g of H</h3>
1 mole of C₅H₁₂ = (12×5) + (1×12) = 72 g
Mass of H in 1 mole of C₅H₁₂ = 12 × 1 = 12 g
Thus,
12 g of H is present in 72 g of C₅H₁₂
Therefore,
22.5 g of H will be present in = (22.5 × 72) / 12 = 135 g of C₅H₁₂
<h3>How to determine the mole of C present in 135 g of C₅H₁₂</h3>
72 g of C₅H₁₂ contains 5 moles of C
Therefore,
135 g of C₅H₁₂ will contain = (135 × 5) / 72 = 9.375 moles of C
Thus, 9.375 moles of C is present in C₅H₁₂ that contains 22.5 g of H
Learn more about mole:
brainly.com/question/13314627
#SPJ1
Hello!
To start off, we must look at atomic masses. Atoms all have different weights, so we must first find hydrogen and oxygen's atomic masses.
Oxygen: 16.00 amu
Hydrogen: 1.01 amu
Now, moving on to the weight of water itself. Water has the formula of H20, with two hydrogen atoms and one oxygen. Therefore, <u>add up the amus to get the weight of one molecule of water.</u>
1.01 + 1.01 + 16.00 = 18.02 amu
Now, to see the ratio of each component. Since hydrogen weighs a total of 2.02 amu (1.01 + 1.01) in the entire atom, we can state that hydrogen makes up about 0.112 of the weight of water. Now apply that ratio to 16 g, and solve.
0.112x = 16
142.857143 = x
So therefore, about 143 grams of water are made when 16g of hydrogen reacts with excess oxygen.
Hope this helps!
Answer:
In Charles law, temperature and volume of the gas are kept at constant pressure. Where as in Boyle's law, pressure and volume of the gas are kept at a constant temperature. In Boyle's law, pressure and volume vary inversely where as, in Charles law, pressure and volume vary directly.