The phenomenon known as "salting-out" occurs at very high ionic strengths, when protein solubility declines as ionic strength rises. As a result, salting out may be used to segregate proteins according to how soluble they are in salt solutions.
Because large levels of sodium chloride disturb the bonds and structure of the active site, the rate of enzyme activity will gradually decrease as the concentration of sodium chloride rises. As a result, some of the active sites get denaturized and the starch loses its ability to attach to them. As more enzymes get denatured and eventually cease to function, enzyme activity will steadily wane.
The answer is B . Brønsted-Lowry Acid/bases trade H+
Answer:
Heat transfer = Q = 62341.6 J
Explanation:
Given data:
Heat transfer = ?
Mass of water = 50.0 g
Initial temperature = 30.0°C
Final temperature = 55.0°C
Specific heat capacity of water = 4.184 J/g.K
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55.0°C - 30.0°C
ΔT = 25°C (25+273= 298 K)
Q = 50.0 g × 4.184 J/g.K ×298 K
Q = 62341.6 J