Answer:
We can solve this by the method of which i solved your one question earlier
so again here molar mass of C12H25NaSO4 is 288.372 and number of moles for 11900 gm of C12H25NaSO4 will be = 11900/288.372
which is almost = 41.26 moles
so to get one mole of C12H25NaSO4 we need one mole of C12H26O
so for 41.26 moles of C12H25NaSO4 it will require 41 26 moles of C12H26O
so the mass of C12H26O = 41.26× its molar mass
C12H26O = 41.26×186.34
= 7688.38 gm!!
so the conclusion is If you need 11900 g of C12H25NaSO4 (Sodium Lauryl Sulfate) you need C12H26O 7688.38 gm !!
Again i d k wether it's right or wrong but i tried my best hope it helped you!!
Answer:
In a chemical reaction, there is a change in the composition of the substances; in a physical change there is a difference in the appearance, smell, or simple display of a sample of matter without a change in composition.
Explanation:
Answer:
the answer is C
Explanation:
6.7 to 13.2 then look at the numbers they go up but not a lot each time
That's a really hard on I thing that you should just tell your teacher that it was hard for you and I'm sure she or he will understand
Answer:

Explanation:
Hello!
In this case, since the study of the bond energy allows us to compute the enthalpies of some reactions, for this combination reaction by which ammonia is yielded, we understand the enthalpy of reaction equals the enthalpy of formation of ammonia, and, in terms of the bonds energy we can write:

Whereas the bonds enthalpy of those bonds that get broken cover the N≡N and the three H-H bonds at the reactants side and the enthalpy of those bonds that are formed cover the six N-H bonds at the products; which means we obtain:

Which differs from the theoretical value that is -46 kJ/mol.
Best regards!