So 6.02*10^22 is avogadro constant, which is the amount of atoms in one mole. If you look Xenon up in the periodic table you will find it's mass given <span>131,293, which is grams per 1 mole.
</span>
Answer:
The boiling point is 308.27 K (35.27°C)
Explanation:
The chemical reaction for the boiling of titanium tetrachloride is shown below:
Ti
⇒ Ti
ΔH°
(Ti
) = -804.2 kJ/mol
ΔH°
(Ti
) = -763.2 kJ/mol
Therefore,
ΔH°
= ΔH°
(Ti
) - ΔH°
(Ti
) = -763.2 - (-804.2) = 41 kJ/mol = 41000 J/mol
Similarly,
s°(Ti
) = 221.9 J/(mol*K)
s°(Ti
) = 354.9 J/(mol*K)
Therefore,
s° = s° (Ti
) - s°(Ti
) = 354.9 - 221.9 = 133 J/(mol*K)
Thus, T = ΔH°
/s° = [41000 J/mol]/[133 J/(mol*K)] = 308. 27 K or 35.27°C
Therefore, the boiling point of titanium tetrachloride is 308.27 K or 35.27°C.
Answer:
11.66 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If P and T are constant, and have different values of n and V:
<em>(V₁n₂) = (V₂n₁).</em>
V₁ = 25.5 L, n₁ = 3.5 mol.
V₂ = ??? L, n₂ = 3.5 mol - 1.9 mol = 1.6 mol.
<em>∴ V₂ = (V₁n₂)/(n₁)</em> = (25.5 L)(1.6 mol)/(3.5 mol) =<em> 11.66 L.</em>
Answer:
b) sharpening a pencil
Explanation:
If you melt lead, boil water, or dissolve sugar in water, you can return all of them back to their original state. If you sharpen a pencil, you can't reattach the shavings as they were originally.
Rutherford used gold for his scattering experiment because gold is the most malleable metal and he wanted the thinnest layer as possible. The goldsheet used was around 1000 atoms thick. Therefore, Rutherford selected a Gold foil in his alpha scatttering experiment.