Answer:
The maximum amount of work is
Explanation:
From the question we are told that
The temperature of the environment is 
The volume of container A is 
Initially the number of moles is 
The volume of container B is 
At equilibrium of the gas the maximum work that can be done on the turbine is mathematically represented as
Now from the Ideal gas law

So substituting for
in the equation above
![W = nRT ln [\frac{V_B}{V_A} ]](https://tex.z-dn.net/?f=W%20%3D%20%20nRT%20ln%20%5B%5Cfrac%7BV_B%7D%7BV_A%7D%20%5D)
Where R is the gas constant with a values of 
Substituting values we have that
Answer:
Final velocity v=19.83 m/sec
Explanation:
We have given initial velocity u =5.13 m/sexc
Acceleration of automobile 
Time t =4.9 sec
We have to find the final velocity v
According to first law of motion v = u+at ,here v is the final velocity , a is acceleration and t is time
So 
So the final velocity is 19.83 m/sec
Answer:
W / A = 39200 kg / m²
Explanation:
For this problem let's use the equilibrium equation of / newton
F = W
Where F is the force of the door and W the weight of water
W = mg
We use the concept of density
ρ = m / V
m = ρ V
The volume of the water column is
V = A h
We replace
W = ρ A h g
On the other side the cylinder cover has a pressure
P = F / A
F = P A
We match the two equations
P A = ρ A h g
P = ρ g h
P = 39200 Pa
The weight of the water column is
W = 1000 9.8 4 A
W / A = 39200 kg / m²