The OH peaks in the IR spectra of benzyl alcohol and benzoic acid should be compared and contrasted.
<h3>What is the IR spectra of Benzoic acid?</h3>
- The right-hand portion of the infrared spectrum of benzoic acid, between wavenumbers 1500 and 400 cm-1, is referred to as the fingerprint region.
- It results from a special combination of intricately overlapping vibrations of the atoms within the benzoic acid molecule.
<h3>What is the IR spectra of Benzyl alcohol?</h3>
- A C-Cl bond is frequently shown by a peak at 700.
- There are a few more peaks at 1500 that are directed at a C=C bond.
<h3>What is IR spectra?</h3>
The percent transmittance (or absorbance) of the radiation through the molecule against the radiation's wave number forms the IR spectrum.
Learn more about IR spectra here:
brainly.com/question/22033021
#SPJ4
Imagine we have <span>mass of solvent 1kg (1000g)
According to that: </span>

= 4.8 mole * 98 g/mole = 470g


m(H2SO4) which is =<span>470g
</span><span>m(solution) = m(H2SO4) + m(solvent) = 470 + 1000 = 1470 g
d(solution) = m(solution) / V(solution) =>
=> 1.249 g/mL = 1470 g / V(solution) =></span>
Are u sure this is the right option? Well, antimony can be decomposed. Including octane.
They all have something to do with electricity
To solve this question, you must use the formula: q=mc(change in temperature), where q is heat, m is mass, C is specific heat and temperature change is temperature change. The specific heat for ice is 2.1kJ/Kg x K (given). The change in temperature is 15 degrees Celsius (which you should change to kelvins so you can cancel out units), or 273 + 15 = 288K. The mass is 150 grams, which is 0.15 kg. Now, we can solve for q, heat. We will do this by substituting variables into the formula. After simplifying and cancelling out units, the answer we get is: 90.72kJ.