Answer:
e) The activation energy of the reverse reaction is greater than that of the forward reaction.
Explanation:
- Activation energy is the minimum amount of energy that is required by the reactants to start a reaction.
- An exothermic reaction is a reaction that releases heat energy to the surrounding while an endothermic reactions is a reaction that absorbs heat from the surrounding.
- <em><u>In reversible reactions, when the forward reaction is exothermic it means the reverse reaction will be endothermic, therefore the reverse reaction will have a higher activation energy than the forward reaction.</u></em> The activation energy of the reverse reaction will be the sum of the enthalpy and the activation energy of the forward reaction.
Gesso is a white paint blend that comprises pigment, chalk and gypsum. It is a medium utilised for surface preparation and as a primer for a painting.
<h3>What are the uses of gesso?</h3>
Gesso is widely utilized for preparing surfaces and as primers by painters. They were used by painters and artists earlier to make canvas, boards for painting purposes.
It was first formulated by chalk powder dust and pigment derived from the animal skin. They are widely used because of their adhering properties.
The use of the gesso makes the paint adhere to the canvas and the board surfaces and also, makes the surface textured.
Therefore, option b. it is used for preparing the surface is correct.
Learn more about gesso here:
brainly.com/question/1191408
Hello.
<span>HI + NaOH --> NaI + H2O
2HClO4 + Sr(OH)2 --> Sr(ClO4)2 + 2H2O
</span>
Have a nice day
Answer:
Enthalpy change for the reaction is -67716 J/mol.
Explanation:
Number of moles of
in 50.0 mL of 0.100 M of 
= Number of moles of HCl in 50.0 mL of 0.100 M of HCl
=
moles
= 0.00500 moles
According to balanced equation, 1 mol of
reacts with 1 mol of HCl to form 1 mol of AgCl.
So, 0.00500 moles of
react with 0.00500 moles of HCl to form 0.00500 moles of AgCl
Total volume of solution = (50.0+50.0) mL = 100.0 mL
So, mass of solution = (
) g = 100 g
Enthalpy change for the reaction = -(heat released during reaction)/(number of moles of AgCl formed)
=
= ![\frac{-100g\times 4.18\frac{J}{g.^{0}\textrm{C}}\times [24.21-23.40]^{0}\textrm{C}}{0.00500mol}](https://tex.z-dn.net/?f=%5Cfrac%7B-100g%5Ctimes%204.18%5Cfrac%7BJ%7D%7Bg.%5E%7B0%7D%5Ctextrm%7BC%7D%7D%5Ctimes%20%5B24.21-23.40%5D%5E%7B0%7D%5Ctextrm%7BC%7D%7D%7B0.00500mol%7D)
= -67716 J/mol
[m = mass, c = specific heat capacity,
= change in temperature and negative sign is included as it is an exothermic reaction]
Answer:
C: Mg
Explanation:
Hybridization of atomic orbitals is a fundamental concept introduced by Pauling that describes the mixing of orbitals at an atom which adds a definite direction to the Lewis - shared electron pair or electron chemical - bond concept.
Carbon(C) can hybridized on sp, sp2 and sp3 simply because it's valence shell gives room for it.
For silicon(si), when forming covalent bonds with other atoms, it's 3s and 3p orbitals are mixed with each other to form new hybrid orbitals.
Magnesium in itself doesn't hybridized except in magnesium hydrides.
Boron orbitals(B): when boron forms bonds with three other atoms like borazine, they are hybridized to either the sp2 or hybridized to the sp3 which occurs when boron forms bonds with four atoms just as is in metal borohydrides.