Answer:
Ethanol is completely miscible due to <u><em>presence</em></u> of Hydrogen bonding.
Ethanethiol is partially miscible due to <u><em>absence</em></u> of Hydrogen Bonding.
Explanation:
The miscibility of liquids depend upon the intermolecular interactions between the two liquids. The stronger the intermolecular interactions the more miscible will be the liquids.
Among the two given examples, Ethanol is more miscible in water because it exhibits hydrogen bonding which is considered the strongest intermolecular interaction. Hydrogen bonding occurs when the hydrogen atom is bonded to more electronegative atoms like Fluorine, Oxygen and Nitrogen. In this way the hydrogen atom gets partial positive charge and the electronegative atom gets partial negative charge. Hence, these partial charges results in attracting the opposite charges on other surrounding atoms.
While, in case of Ethanethiol the hydrogen atom is not bonded to any high electronegative atom hence, there will be no hydrogen bonding and therefore, there will be less interactions between the neighbour atoms.
Answer:
10
Explanation:
The unbalanced combustion reaction is shown below as:-
On the left hand side,
There are 3 hydrogen atoms and 1 nitrogen atom and 2 oxygen atoms
On the right hand side,
There are 1 nitrogen atom and 2 hydrogen atoms and 2 oxygen atoms
Thus,
Right side,
must be multiplied by 6 to balance hydrogen.
Left side,
must be multiplied by 4 to balance hydrogen.
Also, Right side,
is multiplied by 4 so to balance nitrogen.
Left side,
must be multiplied by 5 to balance the whole reaction.
Thus, the balanced reaction is:-
Sum of Coefficient of product - 4 + 6 = 10
- Endothermic reaction means the reactant side takes heat from surrounding and get decomposed i.e ∆H=-ve
- If the equation is exothermic then it means the reactant is happy to decompose .But it's not as it's endothermic
Now
- HgO is Omitted from our solution option.
Hg is a atom so no bonds hence no bond strength occurs.
- O_2 is a molecule and so it's our answer .
He was involved in the mapping of venus and mars
Clearly H2 is in gaseous state as could be seen from (g) written with it which tells state of the product