<em>ANSWER</em>
The number of moles of methane is 905.32 moles
STEP-BY-STEP EXPLANATION:
Given information
The number of particles of methane = 5.45 x 10^26 particles
Let x represents the number of moles of methane
To calculate the number of moles, we will be using the below formula

Recall that, the Avogadro's constant is given as


Therefore, the number of moles of methane is 905.32 moles
False. only valence electrons can bond with other atoms' electrons.
Answer:
First one is: ammonia
Second one is: calcium hydroxide
Explanation:
Answer: 167 g
Explanation:
1) The depression of the freezing point of a solution is a colligative property ruled by this equation:
ΔTf = i × m × Kf
Where:
ΔTf is the decrease of the freezing point of the solvent due to the presence of the solute.
i is the Van't Hoof factor and is equal to the number of ions per each mole of solute. It is only valid for ionic compounds. Here the solute is not ionice, so you take i = 1
Kf is the molal freezing constant and is different for each solvent. For water it is 1.86 m/°C
2) Calculate the molality (m) of the solution
ΔTf = i × m × Kf ⇒ m = ΔTf / ( i × Kf) = 5.00°C / 1.86°C/m = 2.69 m
3) Calculate the number of moles from the molality definition
m = moles of solute / kg of solvent ⇒ moles of solute = m × kg of solvent
moles of solute = 2.69 m × 1.00 kg = 2.69 moles
4) Convert moles to grams using the molar mass
molar mass of C₂H₆O₂ = 62.07 g/mol
mass in grams = number of moles × molar mass = 2.69 moles × 62.07 g/mol = 166.97 g ≈ 167 g