1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
poizon [28]
3 years ago
9

Is the following relation a function ?

Mathematics
2 answers:
Dafna11 [192]3 years ago
6 0
No, it is not a function. It fails the vertical line test (VLT). VLT state that if you draw a vertical line, it must only intersect the graph one time. If it intersections more than once, then it is not a function.
Hoochie [10]3 years ago
5 0
No  because it fails the vertical line test.  Note that  a vertical line can be drawn  through the graph which passes through 2 points. If it was a function any vertical line would pass through   only one point on the graph.
You might be interested in
Among all right triangles whose hypotenuse has a length of 12 cm, what is the largest possible perimeter?
Veronika [31]

Answer:

Largest perimeter of the triangle =  

P(6\sqrt{2}) = 6\sqrt{2} + \sqrt{144-72} + 12 = 12\sqrt{2} + 12 = 12(\sqrt2 + 1)

Step-by-step explanation:

We are given the following information in the question:

Right triangles whose hypotenuse has a length of 12 cm.

Let x and y be the other two sides of the triangle.

Then, by Pythagoras theorem:

x^2 + y^2 = (12)^2 = 144\\y^2 = 144-x^2\\y = \sqrt{144-x^2}

Perimeter of Triangle = Side 1 + Side 2 + Hypotenuse.

P(x) = x + \sqrt{144-x^2} + 12

where P(x) is a function of the perimeter of the triangle.

First, we differentiate P(x) with respect to x, to get,

\frac{d(P(x))}{dx} = \frac{d(x + \sqrt{144-x^2} + 12)}{dx} = 1-\displaystyle\frac{x}{\sqrt{144-x^2}}

Equating the first derivative to zero, we get,

\frac{dP(x))}{dx} = 0\\\\1-\displaystyle\frac{x}{\sqrt{144-x^2}} = 0

Solving, we get,

1-\displaystyle\frac{x}{\sqrt{144-x^2}} = 0\\\\x = \sqrt{144-x^2}}\\\\x^2 = 144-x^2\\\\x = \sqrt{72} = 6\sqrt{2}

Again differentiation P(x), with respect to x, using the quotient rule of differentiation.

\frac{d^2(P(x))}{dx^2} = \displaystyle\frac{-(144-x^2)^{\frac{3}{2}}-x^2}{(144-x)^{\frac{3}{2}}}

At x = 6\sqrt{2},

\frac{d^2(V(x))}{dx^2} < 0

Then, by double derivative test, the maxima occurs at x = 6\sqrt{2}

Thus, maxima occurs at x = 6\sqrt{2} for P(x).

Thus, largest perimeter of the triangle =  

P(6\sqrt{2}) = 6\sqrt{2} + \sqrt{144-72} + 12 = 12\sqrt{2} + 12 = 12(\sqrt2 + 1)

7 0
3 years ago
I would really appreciate help with the following, along with work shown so I can understand how these were solved.
Alja [10]

First, you have to know the double angle formula:

sin 2A  =  2 sin A cos A

cos 2A  =  cos² A − sin² A  =  2 cos² A − 1  =  1 − 2 sin² A

tan 2A<span> = 2 tan </span>A<span> / (1 − tan² </span>A)


Next, find the other leg: 17^2-15^=64, √64 is 8, so the unknown leg length is 8.

sinα=15/17, cosα=8/17, tanα=15/8

sinβ=8/17, cosβ15/17, tanβ=8/15

Plug these values in the above formula, you'll have your answers.


For the half angles, know the half-angle formula:

sin(B/2) = ± √<span>(1 − cos B)/2</span>

cos(B/2) = ± √<span>(1 + cos B)/2</span>

tan(B/2)  =  (1 − cos B) / sin B<span>  =  sin </span>B<span> / (1 + cos </span>B)

refer to this website for details:

<span>https://brownmath.com/twt/double.htm
</span>


For the power reduction formula, please search for it. I tried to copy and paste here, but it wouldn't paste. 

for number 4, factor the quadratic equation into (cscx-8)(cscx+1)=0

cscx=8 or cscx=-1

You may not have the csc button on your calculator. Recall that csc is 1/sin, so sinx=1/8 or sinx=-1, so x is either 7.18 or 270 degrees



6 0
3 years ago
A soccer team sold raffle tickets to raise money for the upcoming season. They sold three different types of tickets: premium fo
lesya692 [45]

Answer:

45 premium tickets were sold

Step-by-step explanation:

p = premium

d = deluxe

r = regular

p+d+r = 273

6p+4d + 2r = 836

118+d = r

Replace r with 118+d

p+d+118+d = 273

p +2d = 273-118

p+2d = 155

6p+4d + 2(118+d) = 836

6p+4d + 236+2d = 836

6p +6d = 836-236

6p + 6d = 600

Divide by 6

p+d = 100

d = 100-p

Replace d in p +2d= 155

p +2(100-p) = 155

p+200-2p = 155

-p = 155-200

-p =-45

p =45

45 premium tickets were sold

3 0
3 years ago
Read 2 more answers
For Anya's birthday her father gave out colorful birthday hats that were cone shaped. Anya was very happy that day. The opening
Darya [45]
Anya will have 5cm of candy sorry if it’s
Wrong
6 0
3 years ago
What is the value of c so that 9x^2 + 15x + c = 0 has one rational solution
valentinak56 [21]

Answer:

c=-9x^2-15x

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Other questions:
  • Factor this? <br> Subtract the following polynomials. <br> (3x^2 - 5x + 12) - (5x^2 + x -11)
    9·1 answer
  • HURRRRRRYYYYYYY 1 QUESTION EXPERTS/ACE HELP QUICK!!!!!
    9·2 answers
  • WHO EVER HELPS GET 18 POINTS AND BRAINLIEST ANSWER!
    10·2 answers
  • Wich number multiplied by itself 3 times gives 42.875
    6·2 answers
  • Solve for x. 5/7x + 1/7=63 NEED HELP ASAP
    14·2 answers
  • What is the total area of a rectangular prism with a height of 10 feet, a width of 6 feet, and a thickness of 4 feet? A. 240 ft2
    10·2 answers
  • 3. Why is it true that finding a square root is the inverse of squaring?
    6·2 answers
  • Pablo graphs a system of equations. One equation is quadratic and the other equation is linear. What is the greatest number of p
    9·2 answers
  • . A soccer ball manufacturer claims the diameters of their ball have a standard deviation of 2 mm when properly inflated. Based
    5·1 answer
  • How can you quickly expand a binomial raised to a power?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!