<em>5</em><em>X</em><em>+</em><em>1</em><em>3</em><em>+</em><em>X</em><em>+</em><em>5</em><em>=</em><em>9</em><em>0</em><em>°</em><em>(</em><em>SUM</em><em> </em><em>OF</em><em> </em><em>COMPLEMENTRY</em><em> </em><em>ANGLE</em><em> </em><em>IS</em><em> </em><em>EQUAL</em><em> </em><em>TO</em><em> </em><em>9</em><em>0</em><em>°</em><em>)</em>
<em>6</em><em>+</em><em>1</em><em>8</em><em>=</em><em>9</em><em>0</em><em>°</em>
<em>6</em><em>X</em><em>=</em><em>9</em><em>0</em><em>°</em><em>-</em><em>1</em><em>8</em><em>°</em>
<em>X</em><em>=</em><em>7</em><em>2</em><em>°</em><em>/</em><em>6</em>
<em>X</em><em>=</em><em>1</em><em>2</em><em> </em><em>°</em><em>ANSWER</em>
Hello!
Simplifying
5x2 + -7x + -3 = 8
Reorder the terms:
-3 + -7x + 5x2 = 8
Solving
-3 + -7x + 5x2 = 8
Solving for variable 'x'.
Reorder the terms:
-3 + -8 + -7x + 5x2 = 8 + -8
Combine like terms: -3 + -8 = -11
-11 + -7x + 5x2 = 8 + -8
Combine like terms: 8 + -8 = 0
-11 + -7x + 5x2 = 0
Begin completing the square. Divide all terms by
5 the coefficient of the squared term:
Divide each side by '5'.
-2.2 + -1.4x + x2 = 0
Move the constant term to the right:
Add '2.2' to each side of the equation.
-2.2 + -1.4x + 2.2 + x2 = 0 + 2.2
Reorder the terms:
-2.2 + 2.2 + -1.4x + x2 = 0 + 2.2
Combine like terms: -2.2 + 2.2 = 0.0
0.0 + -1.4x + x2 = 0 + 2.2
-1.4x + x2 = 0 + 2.2
Combine like terms: 0 + 2.2 = 2.2
-1.4x + x2 = 2.2
The x term is -1.4x. Take half its coefficient (-0.7).
Square it (0.49) and add it to both sides.
Add '0.49' to each side of the equation.
-1.4x + 0.49 + x2 = 2.2 + 0.49
Reorder the terms:
0.49 + -1.4x + x2 = 2.2 + 0.49
Combine like terms: 2.2 + 0.49 = 2.69
0.49 + -1.4x + x2 = 2.69
Factor a perfect square on the left side:
(x + -0.7)(x + -0.7) = 2.69
Calculate the square root of the right side: 1.640121947
Break this problem into two subproblems by setting
(x + -0.7) equal to 1.640121947 and -1.640121947.
Subproblem 1
x + -0.7 = 1.640121947
Simplifying
x + -0.7 = 1.640121947
Reorder the terms:
-0.7 + x = 1.640121947
Solving
-0.7 + x = 1.640121947
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.7' to each side of the equation.
-0.7 + 0.7 + x = 1.640121947 + 0.7
Combine like terms: -0.7 + 0.7 = 0.0
0.0 + x = 1.640121947 + 0.7
x = 1.640121947 + 0.7
Combine like terms: 1.640121947 + 0.7 = 2.340121947
x = 2.340121947
Simplifying
x = 2.340121947
Subproblem 2
x + -0.7 = -1.640121947
Simplifying
x + -0.7 = -1.640121947
Reorder the terms:
-0.7 + x = -1.640121947
Solving
-0.7 + x = -1.640121947
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '0.7' to each side of the equation.
-0.7 + 0.7 + x = -1.640121947 + 0.7
Combine like terms: -0.7 + 0.7 = 0.0
0.0 + x = -1.640121947 + 0.7
x = -1.640121947 + 0.7
Combine like terms: -1.640121947 + 0.7 = -0.940121947
x = -0.940121947
Simplifying
x = -0.940121947
Solution
The solution to the problem is based on the solutions
from the subproblems.
x = {2.340121947, -0.940121947}
Answer:
they match with each other
A -1
B-2
C-3
Step-by-step explanation:
Answer:
number one is 3 Step-by-step explanation:
number 2
the answer is 2
number 3
answer is 42
number 4 answer is 15
9514 1404 393
Answer:
3. C(−1, −5), D(2, −5)
Step-by-step explanation:
The given points are 2 -(-1) = 3 units apart horizontally, so the remaining points will need to be 18/3 = 6 units below, vertically. Translating the given points down 6 gives ...
D = A -(0, 6) = (2, 1) -(0, 6) = (2, -5)
C = B -(0, 6) = (-1, 1) -(0, 6) = (-1, -5)
The two points required to make a rectangle with an area of 18 square units are ...
C(-1, -5), D(2, -5)
_____
The area of a rectangle is the product of length and width. If the area is 18 square units, and the width is 3 units, then the length must be 6 units. 3×6=18.