1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulijaS [17]
4 years ago
6

Manny has just filled out his deposit ticket for his savings account. He hands it to the teller and the teller hands it back to

Manny. The teller explains to Manny that the deposit ticket cannot be accepted in its current form. What must Manny do to the deposit ticket in order for the teller to process the deposit ticket? A deposit ticket. The ticket has not been signed for cash back. The date is December 16. a. Manny forgot to sign the deposit ticket for less cash back b. The subtotal is calculated incorrectly c. The total is calculated incorrectly
Mathematics
2 answers:
Alenkinab [10]4 years ago
7 0

Answer:

a

Step-by-step explanation:

zhuklara [117]4 years ago
4 0

Answer:

Your correct answer is A. Manny forgot to sign the deposit ticket for less cash back.

You might be interested in
What is the solution to the following system of equations?<br><br> 4x + 2y = 18<br> x − y = 3
Vikki [24]

Answer:

the top one

Step-by-step explanation:

8 0
3 years ago
she has 6 cherry candies, 3 grape candies, and 3 lime candies. If Charlotte randomly pulls one piece of candy out of the bag, wh
yKpoI14uk [10]

Answer:     \dfrac{1}{2}

Step-by-step explanation:

We know that probability for any event = \dfrac{\text{Number of favorable outcomes}}{\text{Total outcomes}}

Given : Charlotte has 6 cherry candies, 3 grape candies, and 3 lime candies.

I..e Total pieces of candies she has = 6+3+3=  12

Now , If Charlotte randomly pulls one piece of candy out of the bag, what is the probability that it will be cherry is given by :-

\text{P(cherry)}=\dfrac{\text{Number of cherries}}{\text{Total candies}}\\\\=\dfrac{6}{12}\\\\=\dfrac{1}{2}

Hence, the  probability that it will be cherry is \dfrac{1}{2} .

7 0
3 years ago
A store can buy 3 pairs of shorts for $10 . How much would the store pay for a dozen
FromTheMoon [43]

Answer:

$40

Step-by-step explanation:

12 ÷ 3 = 4

4 × 10 = 40

So, the answer is $40.

<h2><u><em>Please mark as Brainliest!!!</em></u></h2>
4 0
3 years ago
-104= 8x please help 4 people are stuck on this
skelet666 [1.2K]

Answer:

8x = -104

divide 8

x = 13

7 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
4 years ago
Read 2 more answers
Other questions:
  • Determine which of the four levels of measurement (nominal, ordinal, interval, ratio) is most appropriate. brands of cereal
    7·1 answer
  • Solve for X.<br> (Picture)
    5·1 answer
  • 3. What is the estimated probability that teens spend less than an hour per day texting?
    14·2 answers
  • Find the equation for intercept x 4 and y -7​
    13·1 answer
  • Find the quotient. 12a^3 p^4 ÷ -2a^2 p <br> -6a^3 p^5 <br> -24ap^3 <br> -6ap^3 <br> 6a^5 p^3
    8·1 answer
  • I dont understand how to do this​
    13·1 answer
  • 19. Hillary buys 3 pounds of Gala apples and some Granny Smith apples.  Both kinds of apples cost $4.50 per pound. The total cos
    11·2 answers
  • Graph x=3 y=-2x+1 Use your mouse to hover over the point where the two lines intersect. What are the coordinates?
    9·1 answer
  • What is a counterexample for 3/4 and 6/8
    11·1 answer
  • Brainliest for whoever shows all work!!! FYI: one of them MIGHT be an identity or have no solution (almost positive one is sooo-
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!