<h3>
Answer:</h3>
150000 J
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Thermodynamics</u>
Specific Heat Formula: q = mcΔT
- <em>q</em> is heat (in J)
- <em>m</em> is mass (in g)
- <em>c</em> is specific heat (in J/g °C)
- ΔT is change in temperature (in °C or K)
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] <em>m</em> = 225 g
[Given] <em>c</em> = 4.184 J/g °C
[Given] ΔT = 133 °C - -26.8 °C = 159.8 °C
[Solve] <em>q</em>
<u>Step 2: Solve for </u><em><u>q</u></em>
- Substitute in variables [Specific Heat Formula]: q = (225 g)(4.184 J/g °C)(159.8 °C)
- Multiply: q = (941.4 J/°C)(159.8 °C)
- Multiply: q = 150436 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
150436 J ≈ 150000 J
Topic: AP Chemistry
Unit: Thermodynamics
Book: Pearson AP Chemistry
Answer :
- Nuclear fission : In nuclear reaction, the nucleus of a larger atom breaks into two or more smaller nuclei. In fission process, protons and neutrons are produced and larger amount of energy is released.
Example : In nuclear power plant, the energy released from the process of nuclear fission which is converted into electrical energy that is used in our homes and factories.
- Nuclear fusion : In nuclear reaction, the nuclei of two or more smaller atoms combine together to form single larger molecule. In fusion process, the mass of the resulting nuclei is more as compared to the starting nuclei and large amount of energy is also released.
Example : This process occurs in the sun and stars. In this, the isotopes of Hydrogen, Tritium and Deuterium combine together to form a neutron and a helium atom under high pressure and temperature.
Answer:
compounds are substance which can be formed by chemically combining two or more elements.
mixtures are substance that are formed by physically mixing two or more substances
Answer:Some atoms become more stable by gaining or losing an entire electron (or several electrons). When they do so, atoms form ions, or charged particles. Electron gain or loss can give an atom a filled outermost electron shell and make it energetically more stable.
Explanation: