Answer:
The empirical formula is, C4H4S
Explanation:
Number of moles of carbon = 1.119 g/ 44g/mol = 0.025 moles
Mass of Carbon= 0.025 moles × 12 g/ mole = 0.3 g
Number of moles of hydrogen = 0.229/18g/mol × 2 = 0.025 moles
Mass of hydrogen = 0.025 moles × 1 = 0.025 g
Number of moles of sulphur = 0.407g/ 64 g/mol = 0.0064 moles
Mass of sulphur= 0.0064 moles ×32 = 0.2 g
Now we obtain the mole ratios by dividing through by the lowest ratio.
C- 0.025 moles/ 0.0064 moles, H- 0.025 moles/ 0.0064 moles, S- 0.0064 moles/0.0064 moles
C4H4S
<span>A </span>chemical formula<span> is a way of expressing information about the proportions of </span>atoms<span> that constitute a particular</span>chemical compound<span>, using a single line of </span>chemical element<span> symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and </span>plus<span> (+) and </span>minus<span> (−) signs. A chemical formula is not a </span>chemical name showing how the atoms are arranged.
Answer:
20cm^2
Explanation:
Here, Density= Mass/ Volume
=100/5
= 20 cm^2
Answer: -
The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
Temperature of the hydrogen gas first sample = 10 °C.
Temperature in kelvin scale of the first sample = 10 + 273 = 283 K
For the second sample, the temperature is 350 K.
Thus we see the second sample of the hydrogen gas more temperature than the first sample.
We know from the kinetic theory of gases that
The kinetic energy of gas molecules increases with the increase in temperature of the gas. The speed of the movement of gas molecules also increase with the increase in kinetic energy.
So higher the temperature of a gas, more is the kinetic energy and more is the movement speed of the gas molecules.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Answer:
HNO₃.
Explanation:
- It is known that acids decrease the pH of the solution, while bases increase the pH of the solution.
So, HF and HNO₃ decrease the pH of the solution as they produce H⁺ in the solution.
While, KOH and NH₃ increase the pH of the solution as they produce OH⁻ in the solution.
HNO₃ will decrease the pH of the solution greater than HF.
- Because HNO₃ is strong acid that decomposes completely to produce H⁺ more than the same concentration of HF that is a weak acid which does not decomposed completely to produce H⁺.