8.9
The equation for the grain size is expressed as the equality:
Nm(M/100)^2 = 2^(n-1)
where
Nm = number of grains per square inch at magnification M.
M = Magnification
n = ASTM grain size number
Let's solve for n, then substitute the known values and calculate.
Nm(M/100)^2 = 2^(n-1)
log(Nm(M/100)^2) = log(2^(n-1))
log(Nm) + 2*log(M/100) = (n-1) * log(2)
(log(Nm) + 2*log(M/100))/log(2) = n-1
(log(Nm) + 2*log(M/100))/log(2) + 1 = n
(log(33) + 2*log(270/100))/log(2) + 1 = n
(1.51851394 + 2*0.431363764)/0.301029996 + 1 = n
(1.51851394 + 0.862727528)/0.301029996 + 1 = n
2.381241468/0.301029996 + 1 = n
7.910312934 + 1 = n
8.910312934 = n
So the ASTM grain size number is 8.9
If you want to calculate the number of grains per square inch, you'd use the
same formula with M equal to 1. So:
Nm(M/100)^2 = 2^(n-1)
Nm(1/100)^2 = 2^(8.9-1)
Nm(1/10000) = 2^7.9
Nm(1/10000) = 238.8564458
Nm = 2388564.458
Or about 2,400,000 grains per square inch.
The sides are 2, 1, 1.5, and 2.5 clockwise
Answer:law of syllogism
Step-by-step explanation:
-3,450, -0.6, 3.85, 14
Smallest to greatest --->
Answer:
Perimeter of the ΔDEF = 10.6 cm
Step-by-step explanation:
The given question is incomplete; here is the complete question with attachment enclosed with the answer.
D, E, and F are the midpoints of the sides AB, BC, and CA respectively. If AB = 8 cm, BC = 7.2 cm and AC = 6 cm, then find the perimeter of ΔDEF.
By the midpoint theorem of the triangle,
Since D, E, F are the midpoints of the sides AB, BC and CA respectively.
Therefore, DF ║ BC and 
FD = 
= 3.6
Similarly, 

FE = 4 cm
And 
DE = 
= 3 cm
Now perimeter of ΔDEF = DE + EF + FD
= 3 + 4+ 3.6
= 10.6 cm
Perimeter of the ΔDEF is 10.6 cm.