PV = nRT
P is pressure, V is volume, n is number of moles, R is the gas constant, T is temperature in K
(2.85 atm)(12.5 L) = (n)(.08206)(27 C + 273)
n = 1.45 moles x 35.45 grams / mol Cl2 = 51.3 grams
Here is the answer
http://m.imgur.com/tJ2WwiN
In order to see which species has the strongest dispersion forces, you need to calculate their molar mass, because the higher the molar mass, the stronger the dispersion forces.
Since E. C8H18 has the highest molar mass, its dispersion forces are also the strongest ones.
Answer:
1.26 × 10¹⁵ s⁻¹
Explanation:
Work function is the minimum energy required to remove an electron from the surface of metal
energy of the electron = hf - Φ
Φ = work function = hf₀ where f₀ = threshold frequency
f₀ = Φ / h where h ( Planck constant = 6.626 × 10⁻³⁴ Js)
Φ = 5.22eV = 5.22 × 1 eV where 1 eV = 1.60217662 × 10⁻¹⁹ J
Φ = 5.22 × 1.60217662 × 10⁻19 J = 8.363362 × 10⁻¹⁹ J
f₀ = (8.363362 ×10⁻¹⁹ J) / (6.626× 10⁻³⁴ Js) = 1.26 × 10¹⁵ s⁻¹
The frequency must be greater than the 1.26 × 10¹⁵ s⁻¹ to observe the emission
Magnetic is a physical property.