Answer: The mass of ice you would need to add to bring the equilibrium temperature of the system to 300 K is
kg.
Explanation:
We know that relation between heat energy and specific heat is as follows.
q = 
As density of water is 1 kg/L and volume is given as 400,000 L. Therefore, mass of water is as follows.
Mass of water = Volume × Density
= 
= 400,000 kg
or, =
g (as 1 kg = 1000 g)
Specific heat of water is 4.2 J/gm K. Therefore, change in temperature is as follows.
= 305 K - 273 K
= 32 K
Now, putting the given values into the above formula and calculate the heat energy as follows.
q =
= 
=
J
or, =
kJ
According to the enthalpy of melting of ice 333 kJ/Kg of energy absorbed by by 1 kg of ice. Hence, mass required to absorb energy of
kJ is calculated as follows.
Mass = 
=
kg
Thus, we can conclude that the mass of ice you would need to add to bring the equilibrium temperature of the system to 300 K is
kg.
Answer:Each bulb will be as bright as the first bulb was
Explanation:
Answer:
c. abc₃
Step-by-step explanation:
1. a atoms
There are eight corners, each containing an a atom.
No. of a atoms = 8 × ⅛
No. of a atoms = 1
=====
2. b atoms
There is one central b atom.
=====
3. c atoms
There are six faces, each containing a c atom.
No. of a atoms = 6 × ½
No. of c atoms = 3
=====
4. Formula
The simplest formula is abc₃.