Answer:

Explanation:
Since we are given the mass, specific heat, and temperature, we should use the following formula for heat energy.

The mass of the aluminum is 26.3 grams. Its specific heat is 0.930 Joules per gram degree Celsius. We need to find the change in temperature.
- The change in temperature is the difference between the initial temperature to the final temperature.
- The temperature changes <em>from</em> 23.0°C <em>to</em> 67.0°C, so the initial is 23 degrees and the final is 67 degrees.
- ΔT= final temperature - initial temperature
- ΔT= 67°C - 23°C
- ΔT= 44°C
Now we know all the values.
- m= 26.3 g
- c= 0.930 J/g °C
- ΔT= 44°C
Substitute the values into the formula.

Multiply the first two numbers together. The units of grams cancel.

Multiply again. This time, the units of degrees Celsius cancel.

<u>1076.196 Joules</u> of heat will be absorbed by the piece of aluminum.
Answer:
is a class of heavy military ranged weapons built to launch munitions far beyond the range and power of infantry firearms. This development continues today; modern self-propelled artillery vehicles are highly mobile weapons of great versatility generally providing the largest share of an army's total firepower.
Explanation:
it could explode
Answer:
I hope this will help you and Please mark me as Brilliant
Explanation:
Approximately 2 mL of Solution A (on the left) is added to a sample of Solution B (on the right) with a dropping pipet. If a precipitate forms, the resulting precipitate is suspended in the mixture. The mixture is then stirred with a glass stirring rod and the precipitate is allowed to settle for about a minute.
Solution A: 0.5 M sodium hydroxide, colorless
Solution B: 0.2 M nickel(II) nitrate, green
Precipitate: light green
Ni(NO3)2(aq) + 2 NaOH(aq) —> Ni(OH)2(s) + 2 NaNO3(aq)
Credits:
Design
Kenneth R. Magnell Central Michigan University, Mt. Pleasant, MI 48859
John W. Moore University of Wisconsin - Madison, Madison, WI 53706
Video
Jerrold J. Jacobsen University of Wisconsin - Madison, Madison, WI 53706
Text
Kenneth R. Magnell Central Michigan University, Mt. Pleasant, MI 48859
Answer:
2 Cu2O + C = 4 Cu + CO2
Explanation:
CU2O has 2 coefficient
C has 1 coefficient
Cu has 4 coefficient
CO2 has 1 coefficient
Balance Equation 2 Cu2O + C = 4 Cu + CO2