1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
7

One state lottery game has contestants select 5 different numbers from 1 to 45. The prize if all numbers are matched is 2 millio

n dollars. The tickets are $2 each.
Mathematics
1 answer:
Eduardwww [97]3 years ago
8 0
Huhhhh dnbddnndnjsjsjjdjddjdrjrj
You might be interested in
What is the vertex of the graph of y = x2 + 4x?<br> (–2, –12)<br> (–2, –8)<br> (–2, –6)<br> (–2, –4)
SCORPION-xisa [38]

Answer: The vertex of the parabola (quadratic function) is (-2,-4)

Fourth option: (-2,-4)


Solution:

y=x^2+4x

y=ax^2+bx+c; a=1, b=4, c=0

Vertex: V=(h,k)

h=-b/(2a)

h=-4/(2(1))

h=-4/2

h=-2

y=x^2+4x

k=y=h^2+4h

k=(-2)^2+4(-2)

k=4-8

k=-4

Vertex: V=(h,k)

Vertex: V=( -2, -4)



3 0
3 years ago
Read 2 more answers
Hi please help with this question ???):
maw [93]
The answer to your question is -19
7 0
2 years ago
Read 2 more answers
Solve for x in the equation x^2+4x-4=8
quester [9]
I will get you started.

x^2+4x-4 = 8

x^2 + 4x - 4 - 8 = 0

x^2 + 4x - 12 = 0

You must now use the quadratic formula.

In the formula, a = 1, b = 4, and c = -12.

Take it from here.
8 0
3 years ago
Graph a line with a y-intercept of -3 and a slope of 43 .
nasty-shy [4]

Answer: HERE IS THE GRAPH AND PLS CORRECT ME IF I"M WRONG :)

Step-by-step explanation:

8 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Other questions:
  • 32 ÷ 24 is EXACTLY equal to A) 1.3 B) 2.7 C) 4 3 D) 8 3
    11·2 answers
  • Which best describes the slope of the given line?
    13·1 answer
  • Just need a bit of help really quick on 2 questions, I would very much appreciate it.
    6·2 answers
  • Frank needs a total of $360 to cover his expenses for the week. He earns $195 a week working at a restaurant and also walks dogs
    8·1 answer
  • A good indicator of the value of a company is the ratio of the price of its stock to its yearly earnings expressed as dividends.
    13·1 answer
  • Which of the following values satisfy the inequality shown? you must select all that apply -4≤20
    8·2 answers
  • Finding the sum of the measures of the interior angles of a convex nonagon
    10·1 answer
  • Please can you help me???
    10·1 answer
  • Solve the literal equation for y.<br> 6x + 3y = 3
    9·1 answer
  • Solve the inequality,<br> a +18 &lt; 7
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!