Answer:
D
Explanation:
I think it is D. Think about it- if a human jumps, they are less than the gravitational force. But, if you are greater than the gravitational force, I think you will go into space.
Answer:
130ml of HCl(36%) in 4.90L solution => pH = 1.50
Explanation:
Need 4.90L of HCl(aq) solution with pH = 1.5.
Given pH = 1.5 => [H⁺] = 10⁻¹·⁵M = 0.032M in H⁺
[HCl(36%)] ≅ 12M in HCl
(M·V)concentrate = (M·V)diluted
12M·V(conc) = 0.032M·4.91L
=> V(conc) needed = [(0.032)(4.91)/12]Liters = 0.0130Liters or 130 ml.
Mixing Caution => Add 131 ml of HCl(36%) into a small quantity of water (~500ml) then dilute to the mark.
<span>
</span>

<span>
You have OH- conc = </span>2.3 ✕ 10−6 m
From the formula, you can observe the ratio of Cu2+ to OH- is 4 : 6 = 2:3
So, for 2.3 ✕ 10−6 m OH-
[Cu2+] =

Answer:
when the rates of the forward and reverse reactions are equal
Explanation:
In a chemical system, the reaction reaches a dynamic equilibrium when the rate of formation of product equals the rate of formation of reactants. This implies that both the forward and revered(backwards) reaction are occurring at the same rate.
Answer:
Option A. It has stayed the same.
Explanation:
To answer the question given above, we assumed:
Initial volume (V₁) = V
Initial temperature (T₁) = T
Initial pressure (P₁) = P
From the question given above, the following data were:
Final volume (V₂) = 2V
Final temperature (T₂) = 2T
Final pressure (P₂) =?
The final pressure of the gas can be obtained as follow:
P₁V₁/T₁ = P₂V₂/T₂
PV/T = P₂ × 2V / 2T
Cross multiply
P₂ × 2V × T = PV × 2T
Divide both side by 2V × T
P₂ = PV × 2T / 2V × T
P₂ = P
Thus, the final pressure is the same as the initial pressure.
Option A gives the correct answer to the question.