Answer:
B) Protons and Neutrons
Explanation:
In every atom, there is a Nucleus which contains protons and Neutrons. Protons being positive and Neutrons not having a charge (neutral).
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
Answer:

Explanation:
Hello,
In this case, we can first compute the heat required for such temperature increase, considering the molar heat capacity of water (75.38 J/mol°C):

Afterwards, the mass of ice that can be melted is computed by:

So we solve for moles with the proper units handling:

Finally, with the molar mass of water we compute the mass:

Best regards.
Answer:
6,480 kilometers
Explanation:
1 day = 86,400 seconds
1 kilometer = 100,000 centimeters
Equation:
86,400 x 7,500 = 648,000,000
648,000,000 ÷ 100,000 = 6,480
Hope this helped : )
A liquid because gas disolves with air