My answer to the question above is not the best example but I hope it will help you. <span>The Arrhenius model says that acids always contain H+ and that bases always contain OH-. </span>
<span>The Bronsted-Lowry model thinks of acids as being proton donors and proton acceptors, so bases no longer need to contain OH-, and acids donate a proton to water forming H3O+. </span>
<span>Lewis acids are electron pair acceptors, and Lewis bases are electron pair donors. For instance, H+ + OH- => H20. H+ has no electrons, so when it bonds to the Oxygen, it gains an electron pair. OH- "loses" an electron pair.</span>
Answer:
4 tabletes/dose
Explanation:
mass person = (90 Lb)×(Kg/2.20462 Lb) = 40.823 Kg body
amount of medicine = 50 mg/Kg body.day
frecuency = 2 dose/day
⇒ amount of medicine/day = (50 mg/kg body.day)×(40.823 Kg body) = 2041.168 mg/day
⇒ mg medicine/dose = (20141.168 mg/day)×(day/ 2 dose) = 1020.584 mg medicine/dose
∴ mg medicine/tablet = 250 mg medicine/tablet
⇒ # tabletes/dose = (1020.584 mg medicine/dose)×(tablet/250 mg medicine) = 4.082 tabletes/dose
⇒ # tabletes/dose ≅ 4 tabletes/dose
Where is the map??? Need the map to answer
To solve this question, we will use Graham's law which states that:
(R1 / R2) ^ 2 = M2 / M1 where
R1 and R2 are the rates of effusion and M1 and M2 are the molar masses of the two gases.
From the periodic table, we can calculate the molar mass of O2 as follows:
molar mass of O2 = 2*16 = 32 grams
Therefore we have:
R1 / R2 = Ry / RO2 = 1/2
M1 is My we want to get
M2 is molar mass of O2 = 32 grams
Substitute in the above equation to get the molar mass of y as follows:
(1/2) ^2 = (32/My)
1/4 = 32/My
My = 32*4 = 128
Therefore, molar mass of gas y = 128 grams
Answer:
B. The temperature of the water when the food sample has finished burning completely.
Explanation:
Heat or thermal energy is a form of energy that transfers from one object to another due to a temperature difference between the objects. The units for heat are joules or calories.
Calorimetry is the measurement of heat energy released or absorbed in a chemical reaction. A calorimeter is used in calorimetry. The calorimeter operates on the Law of Conservation of Energy which states that energy is never created or destroyed but is transformed from one form to another or between objects.
In food calorimetry, the energy released when food is burned is measured by recording the rise in temperature of water in a calorimeter when a given mass of a food sample is burned completely.
Energy can be calculated using the formula: Q = mc ∆T
where Q = the energy in joules or calories, m = the mass in grams, c = specific heat and ∆T = the change in temperature (final temperature - initial temperature).
The temperature of the water when the food sample has finished burning completely is taken as the final temperature of the water. The sample is allowed to smolder for sometime before recording the final water temperature. This is because the water temperature will continue to rise after the flame has gone out.