Ca ionises into Ca^2+. Ca^2+ will be attracted to O^2- ions in the water, since opposite charges attract. (Hydrogen in water forms H^+)
Answer:
CuSO4 + 2 NaOH = Cu(OH)2 + Na2SO4
The average kinetic energy of 1 mole of a gas at -32 degrees Celsius is:
3.80 x 103 J
The relationship between volume and temperature of a gas, when pressure and moles of a gas are held constant, is: V*T = k.
FALSE
The relationship between moles and volume, when pressure and temperature of a gas are held constant, is: V/n = k. We could say then, that:
If the moles of gas are tripled, the volume must also triple.
If the temperature and volume of a gas are held constant, an increase in pressure would most likely be caused by an increase in the number of moles of gas.
TRUE
If the vapor pressure of a liquid is less than the atmospheric pressure, the liquid will not boil.
TRUE
35 - AB
36 - BD
33 - true
34 - False
20 - 6
21 - orthohombic
<span>E=hν</span> where E is the energy of a single photon, and ν is the frequency of a single photon. We recall that a photon traveling at the speed of light c and a frequency ν will have a wavelength λ given by <span>λ=<span>cν</span></span>λ will have an energy given by <span>E=<span><span>hc</span>λ</span></span><span>λ=657</span> nm. This will be <span>E=<span><span>(6.626×<span>10<span>−34</span></span>)(2.998×<span>108</span>)</span><span>(657×<span>10<span>−9</span></span>)</span></span>=3.0235×<span>10<span>−19</span></span>J</span>
So we now know the energy of one photon of wavelength 657 nm. To find out how many photons are in a laser pulse of 0.363 Joules, we simply divide the pulse energy by the photon energy or <span>N=<span><span>E<span>pulse </span></span><span>E<span>photon</span></span></span>=<span>0.363<span>3.0235×<span>10<span>−19</span></span></span></span>=1.2×<span>1018</span></span>So there would be <span>1.2×<span>1018</span></span><span> photons of wavelength 657 nm in a pulse of laser light of energy 0.363 Joules.</span>