Answer:
I e III
Step-by-step explanation:
Recebemos declarações na questão acima para considerar.
Declaração I. O inverso de 0,2 é 5.
Matematicamente, isso é escrito como:
1 / 0,2
0,2 = 2/10
Portanto: 1 ÷ 2/10 = 1 × 10/2
= 5
Afirmação 1 é verdadeira
Declaração II.
O triplo de 2/5 é 6/15.
Triplo de 2/5 = 2/5 + 2/5 + 2/5
= 2 + 2 + 2/5
= 6/5
= 1 1/5
Declaração II é falsa
III. A metade de 0,5 é 1/5
1/2 de 0,5
= 1/2 × 0,5 = 0,25
Convertendo em fração
= 0,25 = 25/100
= 1/4
Declaração III está correta
Portanto, as afirmações verdadeiras são I e III
Answer:
3(x - 5)(x + 1).
Step-by-step explanation:
3x^2 - 12x - 15
Dividing through by 3:
= 3(x^2 - 4x - 5)
We need 2 numbers whose sum is -4 and whose product = -5. That is -5 and +1 , so the factors are:
3(x - 5)(x + 1).
Answer: 
Step-by-step explanation:
Since, The total number of student = 300
Out of which,
The number of students who are only in Maths = 120
And, The number of students who are only in Science = 50
While, the students who are not from any subject = 100
Hence, the number of student who are from both maths and science = Total student - Maths student (only) - science student (only) - None
= 300 - 120 - 50 - 100
= 30
That is, there are 30 students who are both from science and maths,
Thus, the probability of selecting one student who is both from maths and science = 30/300 = 1/10