Density = Mass ÷ Volume
D= 30g ÷ 6 cm^3
D= 5 g/dm^3
Answer:
molality of sodium ions is 1.473 m
Explanation:
Molarity is moles of solute per litre of solution
Molality is moles of solute per kg of solvent.
The volume of solution = 1 L
The mass of solution = volume X density = 1000mL X 1.43 = 1430 grams
The mass of solute = moles X molar mass of sodium phosphate = 0.65X164
mass of solute = 106.6 grams
the mass of solvent = 1430 - 106.6 = 1323.4 grams = 1.3234 Kg
the molality = 
Thus molality of sodium phosphate is 0.491 m
Each sodium phosphate of molecule will give three sodium ions.
Thus molality of sodium ions = 3 X 0.491 = 1.473 m
In comparison see it is very easy in goolge
Answer:
i think but i am not sure but according to me it mainly reacts yo non metals and i think its very reactive if my answer is wrong then comment below this question i will see it and i will get an opportunity to learn something new
Answer:
The sample of lithium occupies the largest volume.
Explanation:
Given the densities for the four elements, we have the expression
that shows the relationship between mass and Volume to express the density of an element.
For each element we have:




The problem says that all the samples have the same mass, so:

it means that m is a constant
Now, solving for the Volume in each element and with m as a constant, we have:












If we assume m = 1g, we find that:




So we can see that the sample of lithium occupies the largest volume with 1.88mL
Note that m only can take positive values, so if you change the value of m, always will be the lithium which occupies the largest volume.