Answer:
A. 2 bonds
Explanation:
If you see a charch of ci20 it would easily show the answer.
Answer:
1.14 × 10³ mL
Explanation:
Step 1: Given data
- Initial volume of the gas (V₁): 656.0 mL
- Initial pressure of the gas (P₁): 0.884 atm
- Final volume of the gas (V₂): ?
- Final pressure of the gas (P₂): 0.510 atm
Step 2: Calculate the final volume of the gas
If we assume ideal behavior, we can calculate the final volume of the gas using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 0.884 atm × 656.0 mL/0.510 atm = 1.14 × 10³ mL
Mass divide by volume
M
__
V
Answer:
The total pressure of three gases is 837.56 mmHg.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
In this case, the total pressure can be calculated as:
PT= 2.67 mmHg + 45.69 mmHg + 789.6 mmHg
Solving:
PT= 837.56 mmHg
<em><u>The total pressure of three gases is 837.56 mmHg.</u></em>
Answer:
electron: orbiting around the nucleus
proton: inside the nucleus
neutron: inside the nucleus