72.6g
The density formula is density equal mass divided by volume (d=m/v) to solve this you must get the mass by itself. You do this by multiply volume on both sides which then gets you density times volume equal mass. Then you can plug in the numbers which is 1.20g/mL x 60.5 mL the mL cancels out which leaves you with grams and thus you have 72.6g.
Https://www.google.com/search?q=how+to+solve+fir+atomic+mass+in+chemisty&ie=UTF-8&oe=UTF-8&hl=en-us&client=safari#kpvalbx=1
Here is the link to a great video that explains your question nicely, hope this helps.
Answer:
D) 2-methylpent-2-ene
Explanation:
This is an elimination reaction of Halogenoalkane. 2-bromo-2-methylpentane when is heated with NaOH or NaOC2O5( sodium ethoxide) in ethanol will form alkene rather than alcohol.
2-methylpent-1-ene is minor product since double bond form with secondary Carbon rather than primary Carbon.
Answer:
<em>so mass in gram=560grams</em>
Explanation:
number of moles=10moles
molar mass=56grams/moles
mass in gram of Fe=?
as we know that

<em>evaluating the formula</em>
<em>number of moles×molar mass=mass in gram</em>
<em>mass in gram=10moles×56grams/moles</em>
<em>mass in gram=560grams</em>
<em>i hope this will help you :)</em>
1.06g
Please refer to the image attached.
You first find the number of moles (n) for KClO3 as you have been given the mass. So n = mass/Mr gives you the moles that is 0.022 mol
Next you use the ratio 2:3 as per the equation where it's 2KClO3 ---> 3O2 so you just cross multiply and get the moles for oxygen.
Now that you know the number of moles for oxygen, you can use the same moles equation that you used earlier to find the mass. mass=n×Mr and so you get the answer as 1.06g of oxygen.