Hello!
<span>We have the following statement data:
</span>
Data:




<span>As the percentage is the mole fraction multiplied by 100:
</span>

<span>The mole fraction will be the percentage divided by 100, thus:
</span><span>What is the partial pressure of oxygen in this mixture?
</span>



<span>To calculate the partial pressure of the oxygen gas, it is enough to use the formula that involves the pressures (total and partial) and the fraction in quantity of matter:
</span>
In relation to

:




<span>
Answer:
</span><span>
b. 320.0 mm hg </span>
2C4H10 + 13O2 = 8CO2 + 10H2O
1. (2.06g C4H10)/(58.12 g/mol C4H10) = 0.035mol C4H10
2. (0.035molC4H10)(10 mol H2O/2mol C4H10) = 0.177mol H2O
3. (0.177mol H2O)(18.01g/mol H2O) = 3.19g H2O
The Half life is the time taken for a radioisotope or a radioactive substance to decay by half its original amount. The half life of carbon 14 is 5600 years.
Original mass is 100%
Remaining amount is 24%
Therefore; 0.24 = 1 × (1/2)^n
n = log 0.24/log 0.5
= 2.06
therefore, the age of the fossil is 5600×2.06
= 11529.8
≈ 11529 years
I don't know if this is the answer you are looking for but it would be flat unless the player pushed the tuning slide in.
The number of moles of moles of Magnesium,chlorine and oxygen atoms in 7.80 moles of Mg(ClO4)2 is calculated as below
find the total number of each atom in Mg(ClO4)2
that is mg = 1 atom
Cl = 1x2 = 2 atoms
O = 4 x2 = 8 atoms
then multiply 7.80 moles with total number of each atom , to get the number moles of each atom
that is
Mg = 7.80 x1= 7.80 moles
cl = 7.80 x2=15.6 moles
O = 7.80 x8= 62.4 moles